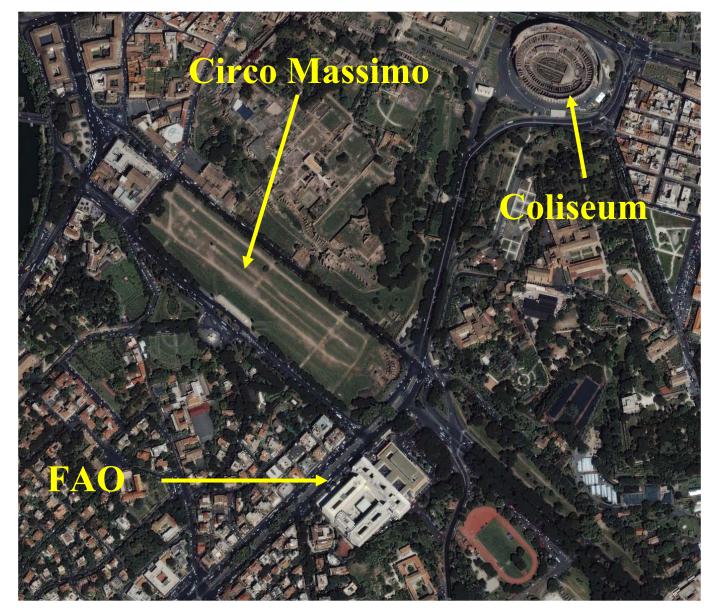
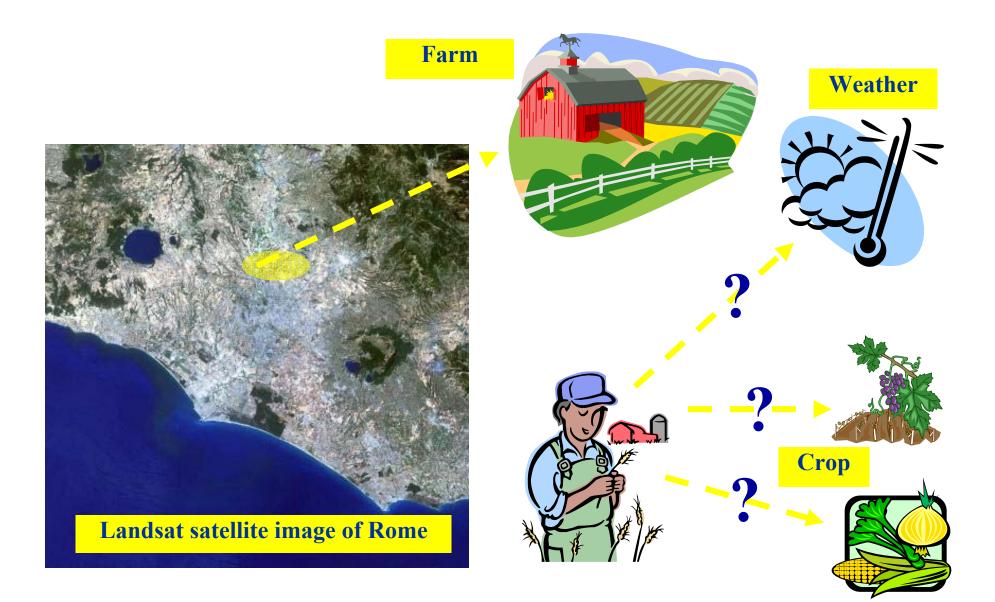
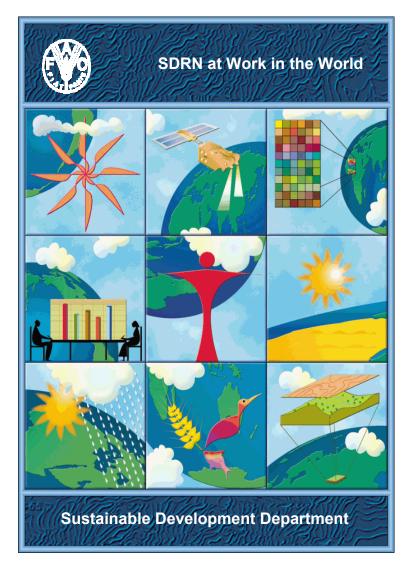
Food and Agriculture Organization of the United Nations AgroMetShell Workshop 15-17 September 2003 Rome, Italy


Other FAO software related to AgroMetShell

Michele Bernardi


Environment and Natural Resources Service Agro-meteorology Group

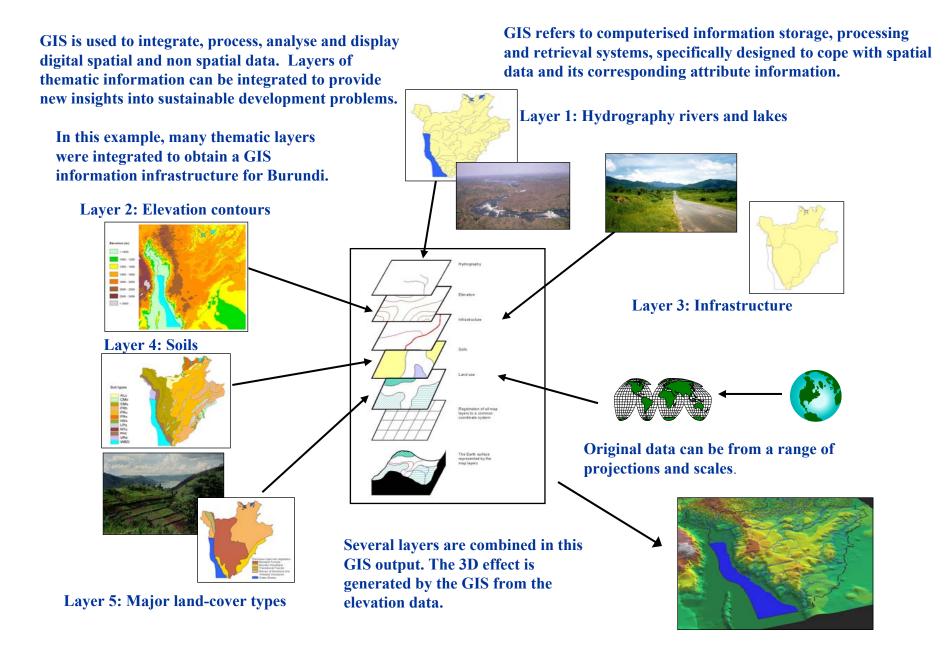
FAO



Satellite photograph of Rome

Climatic data needs

Environment and Natural Resources Service (SDRN)

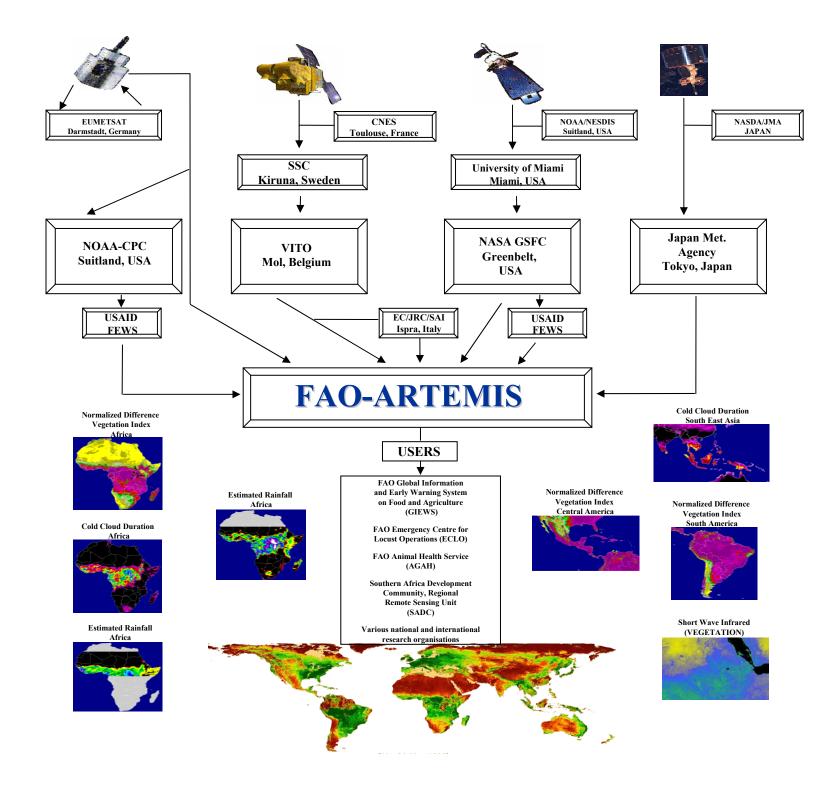

It's the integrated response to FAO's environmental and natural resources programme requirements.

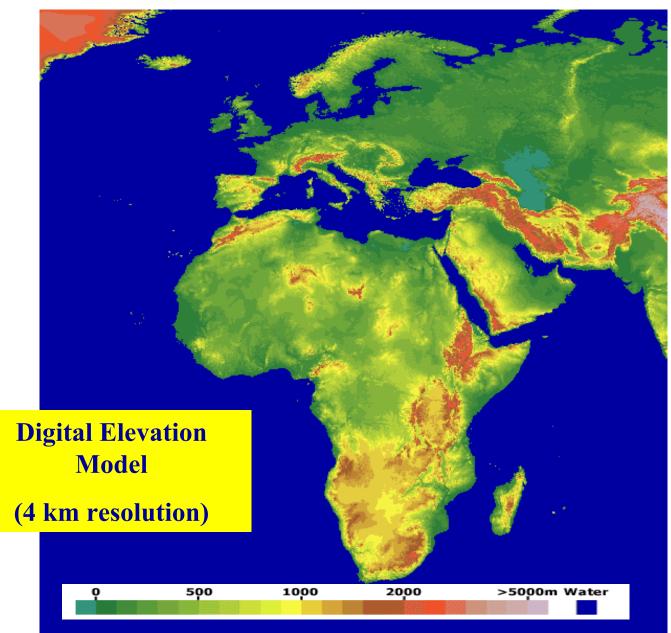
SDRN deals with sustainable development and natural resources and environment management issues in order to:

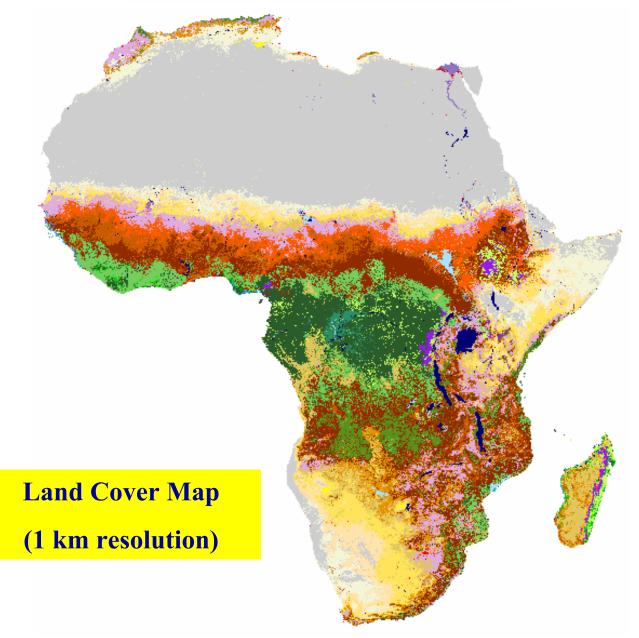
- develop spatial information infrastructures that enable information access, sharing and lower costs;
- promote integrated data and information use for food security and sustainable development;
 develop methodologies, guidelines and policies for resource management and environmental monitoring.

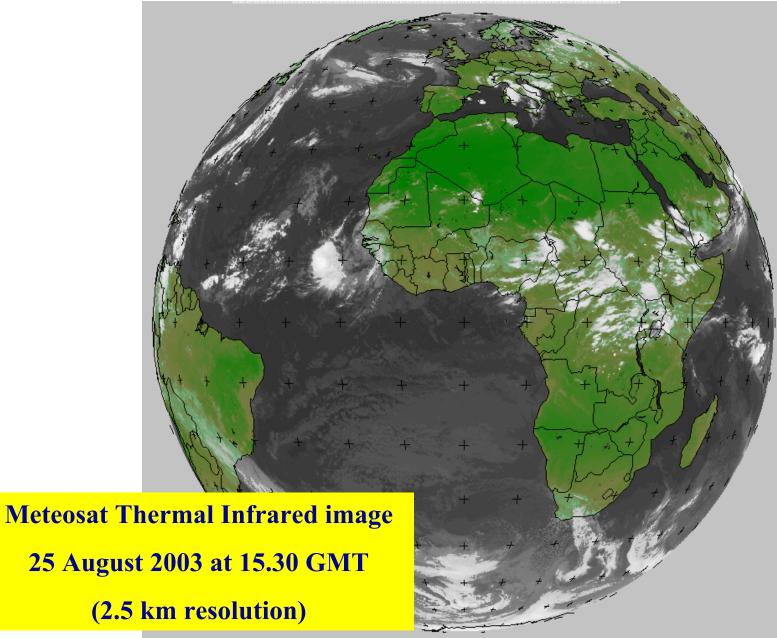
SDRN has a multidisciplinary team of experts in geographical information systems, remote sensing, agro-meteorology, environment, energy, ecology, and economics.

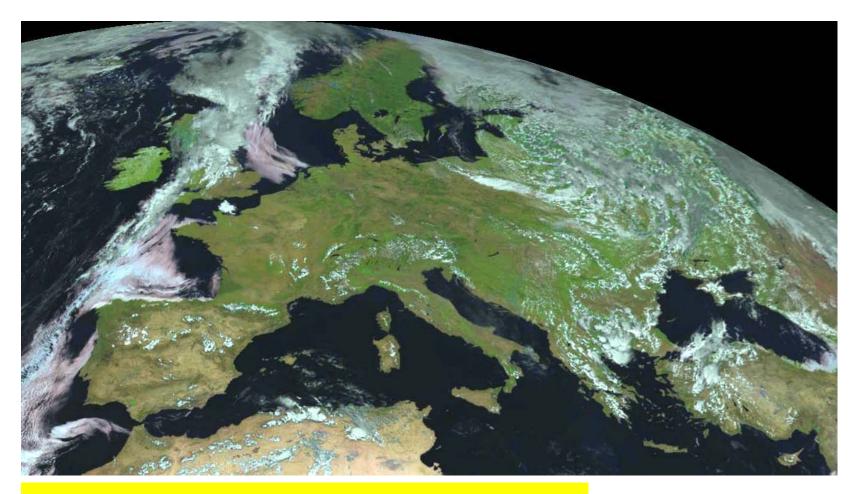
Geographic Information System (GIS)

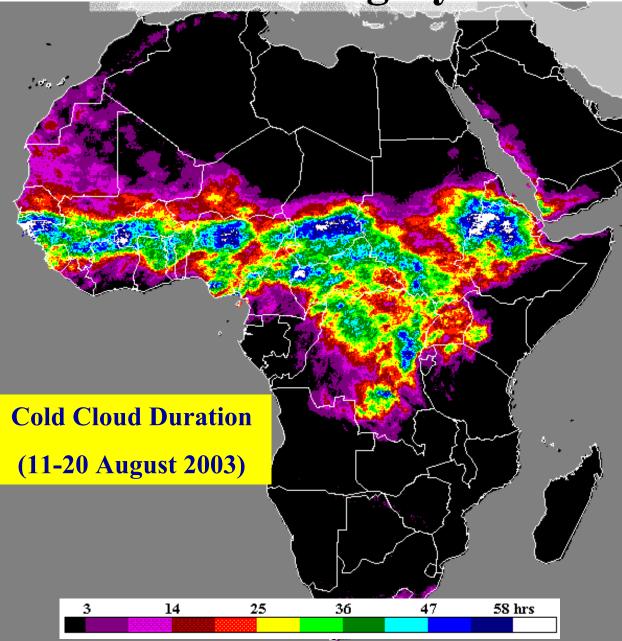

Advanced Real-Time Environmental Monitoring Information System (ARTEMIS)

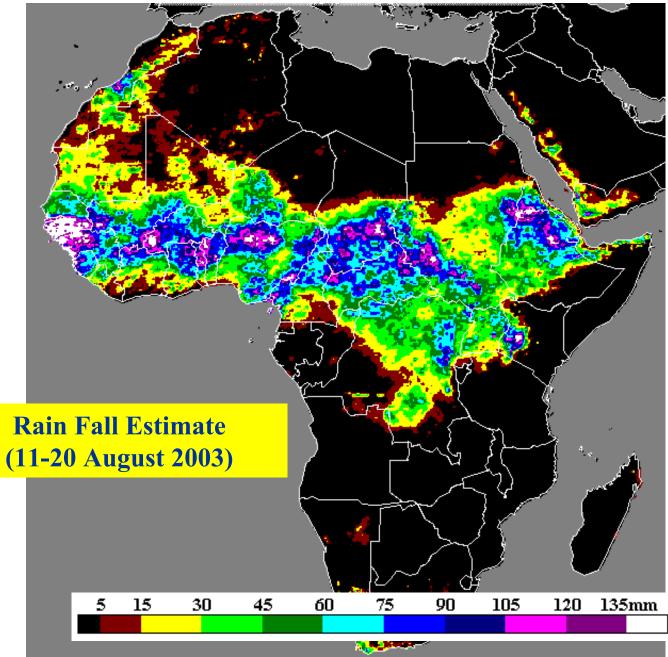

Since August 1988, ARTEMIS has been operationally receiving, processing, archiving and disseminating low-resolution remote sensing imagery in support of FAO's programmes on early warning for food security, migrant pest and disease control.

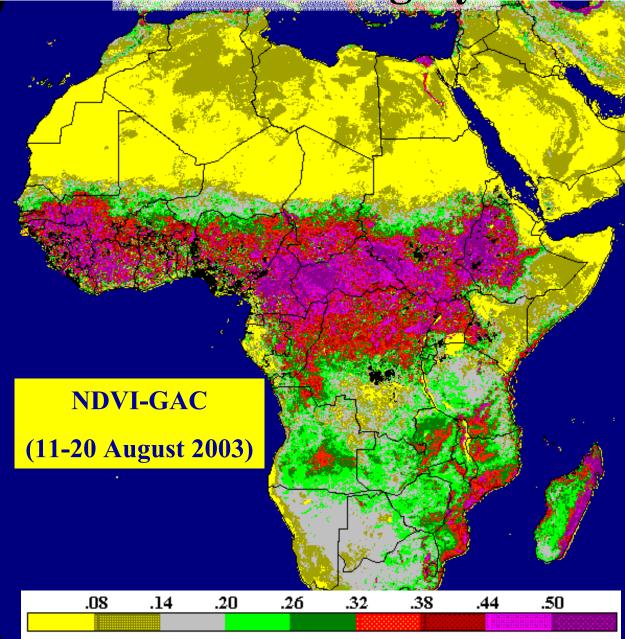

The ARTEMIS system was implemented by FAO in close co-operation with NASA Goddard Space Flight Centre, USA, the National Aerospace Laboratory (NLR) of the Netherlands and the University of Reading, U.K. with funding support from the Government of the Netherlands.

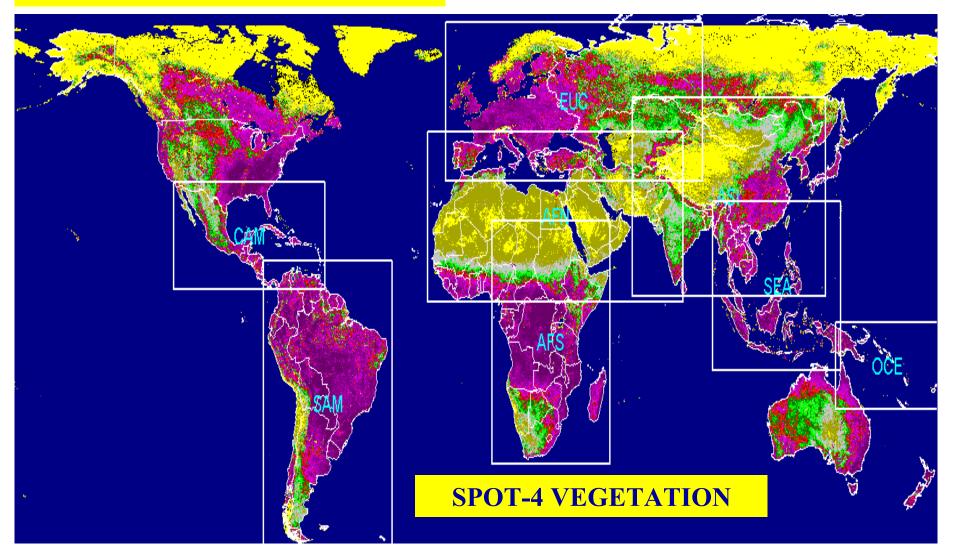

The ARTEMIS archive contains products derived from four different series of satellites by a number of processing centres and are available at daily, 10-daily, bi-weekly and/or monthly intervals.

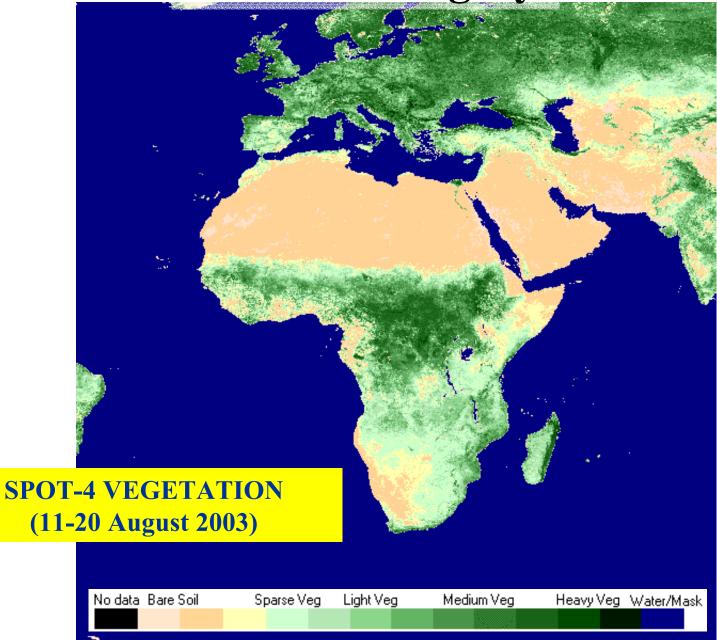

They can be seen at http://METART.FAO.ORG

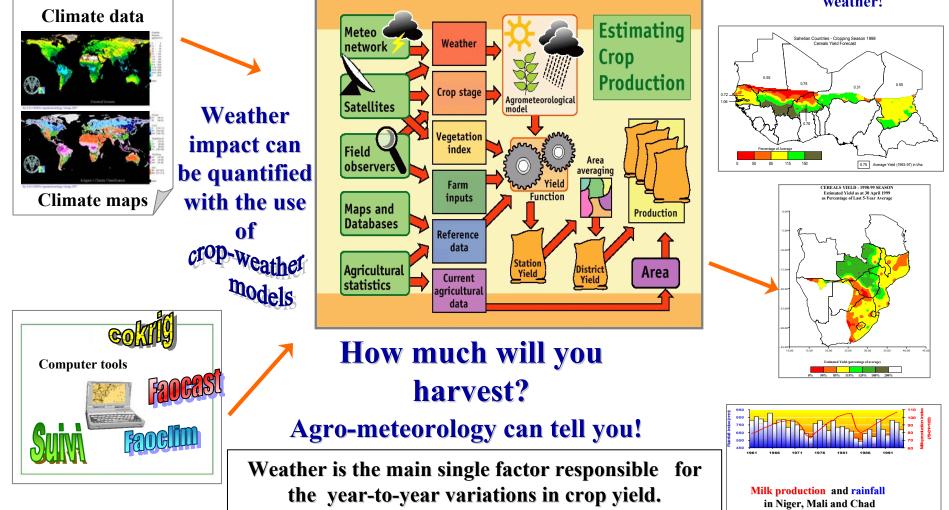







Meteosat Second Generation composite image 10 August 2003 at 12.00 GMT (1 km resolution)




Real-Time Satellite Data Coverage

Agro-meteorology Group

Depending on the country, up to 70% of the yield can be lost due to poor weather!

FAO agro-meteorologists closely monitor crop conditions in Africa and extreme phenomena, such as El Niño. Crop-weather models are also used for the assessment of environmental risk and climate change impact.

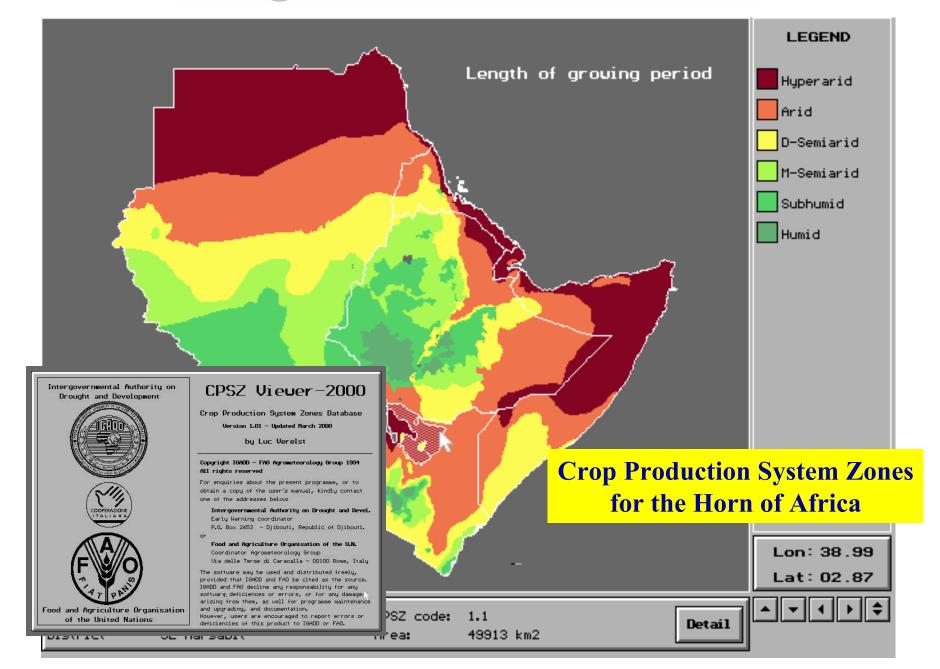
Agro-meteorology Group

Main activities

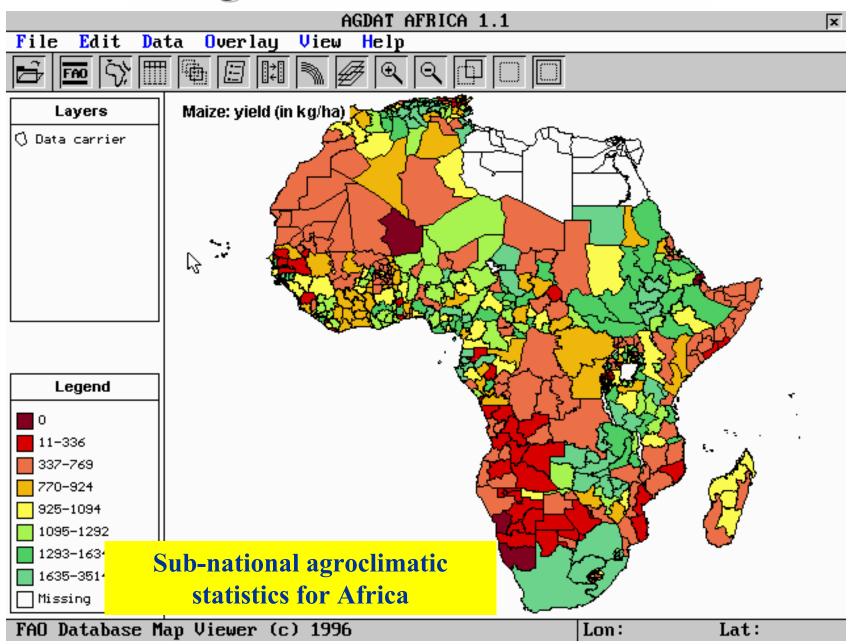
⇒ Agro-climatic databases: (i) collection of world-wide monthly time series and normals for about 25000 stations; (ii) dissemination of a database of African sub-national crop statistics; (iii) reference unit on climate, and climate change and agriculture.

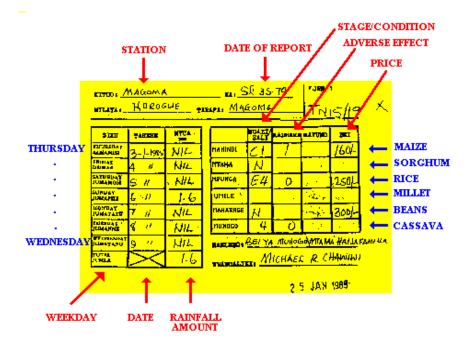
Development and standardization of tools and methods of agro-climatic databases and application software: it includes spatial interpolation of climatic variables, impact assessments and agroclimatic risk.

Crop monitoring ad yield forecasting: based on rainfall reports from FAO country representatives, GTS data, satellite imagery and crop specific water balance model. The outputs are provided to the Global Information and Early Warning System (GIEWS).


Agro-meteorology Group

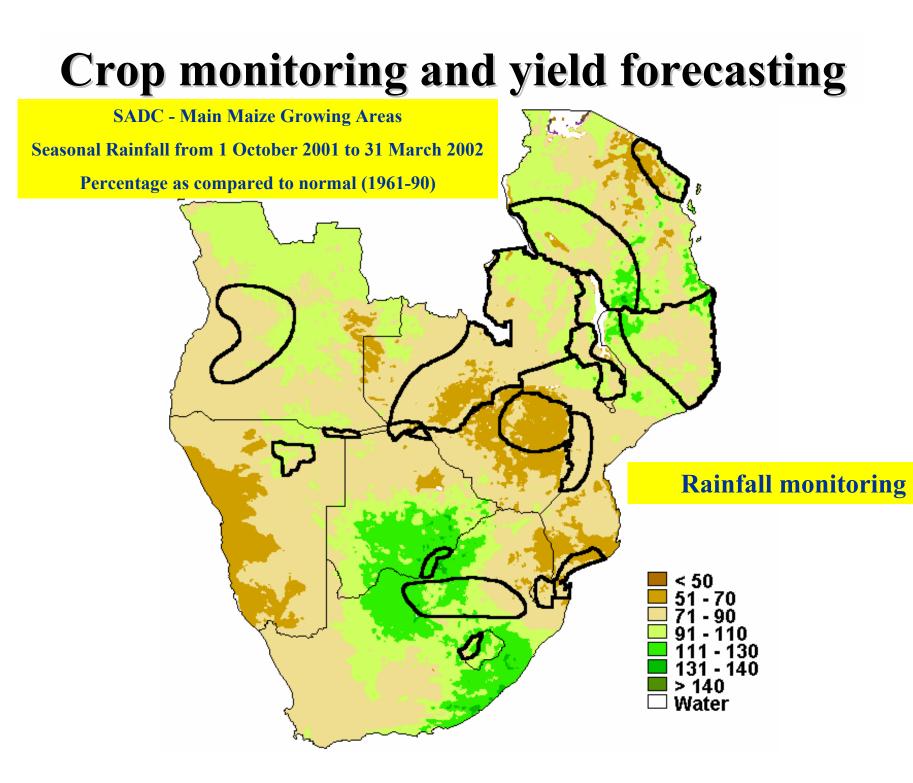
Main activities

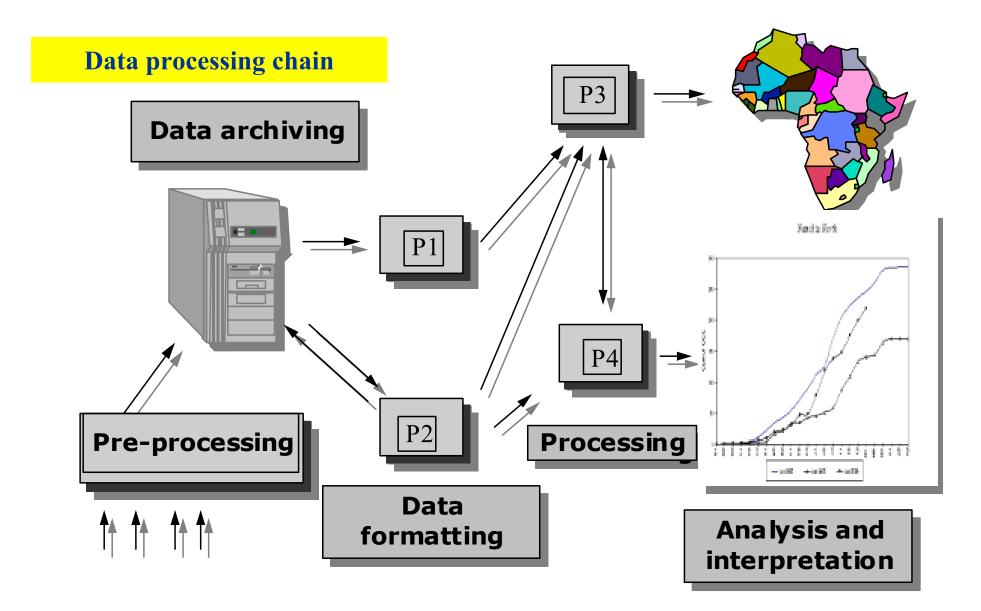

Climate-related risk in agriculture: analysis of climate risk and vulnerability applied to agricultural production and attempts to quantify, at a national and global scale, the losses actually suffered by agriculture due to climate variability.

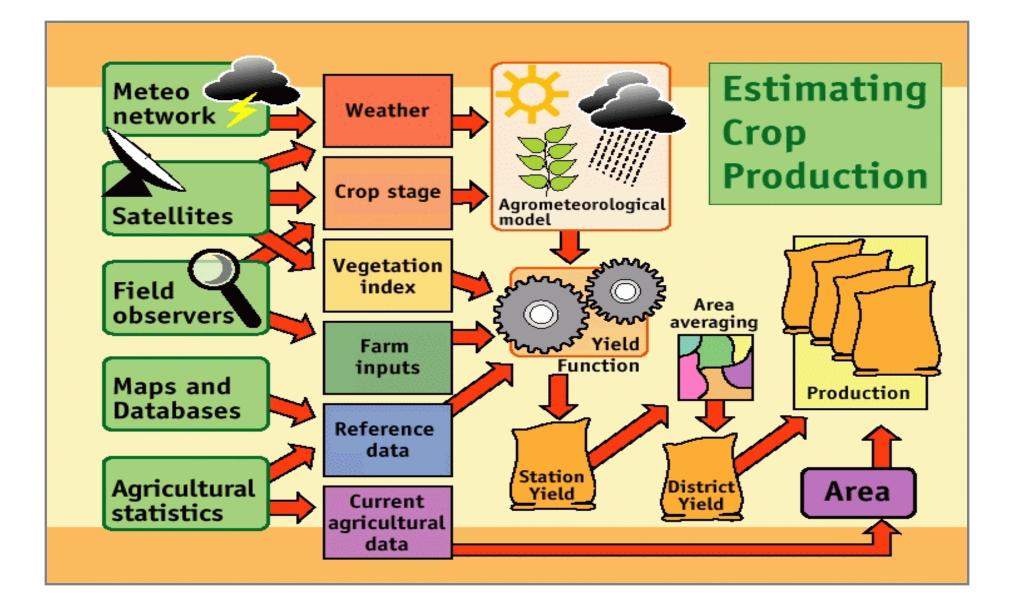

Disaster Impact Assessment: evaluation of methodologies for rapid evaluation of geophysical disaster impact as related to the agricultural sector, and development of a detailed disaster impact database as a tool for impact simulation.

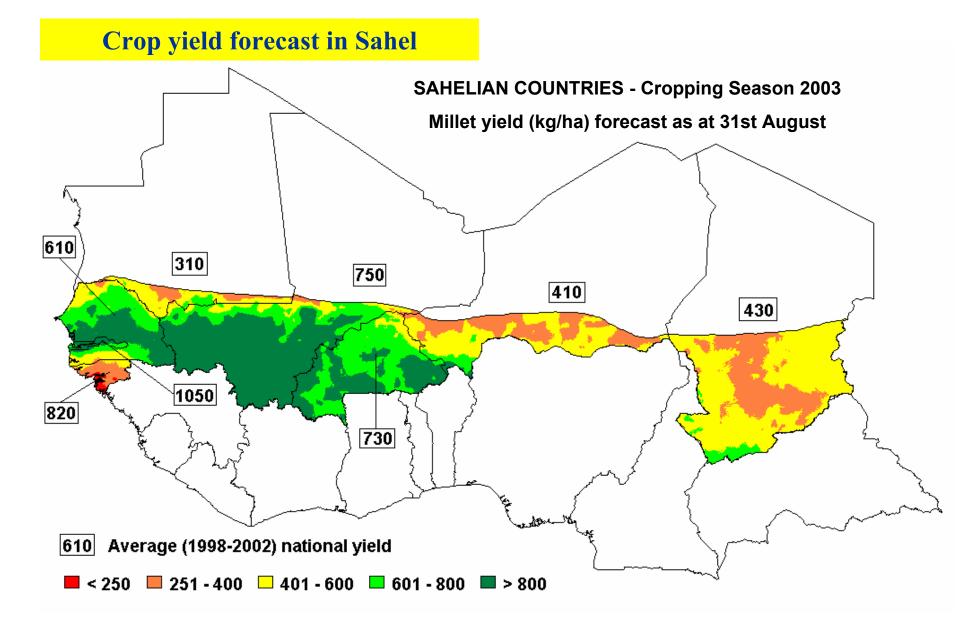
Agro-climatic database

Agro-climatic database

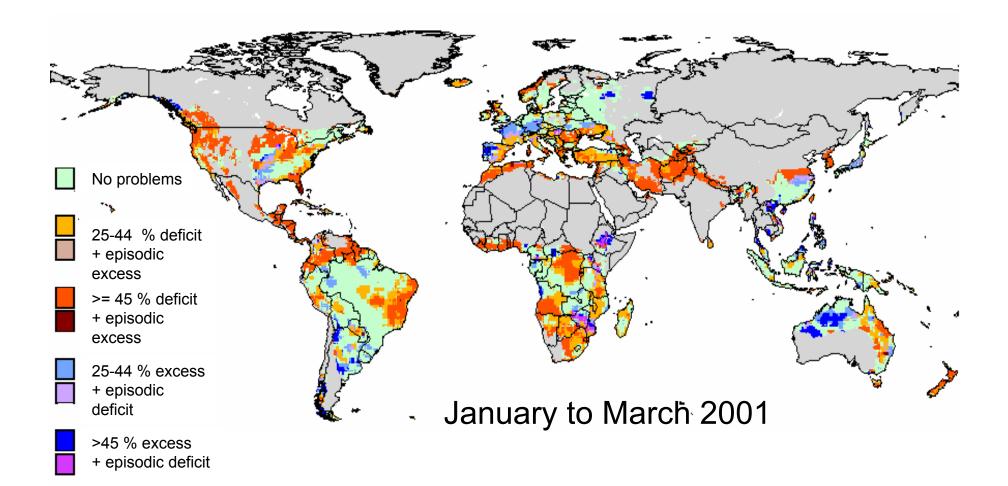


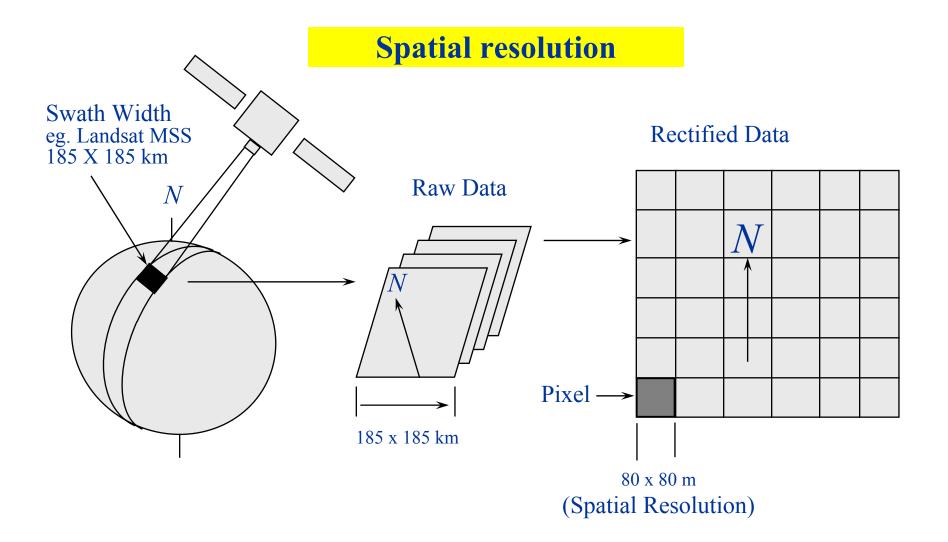


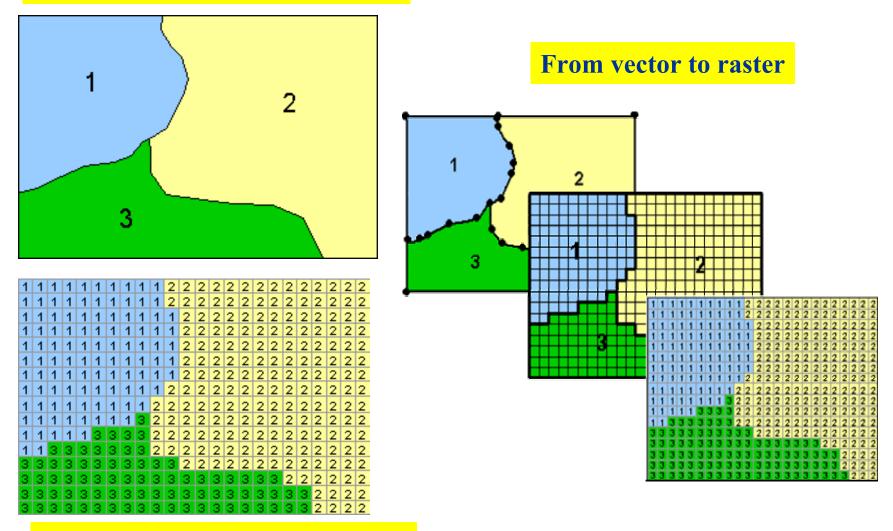

République du Niger Direction de la Météorologie Nationale BP 218 Niamey Pluviométrie décadaire, cumulée de la saison en cours à la : Troisième décade de Juin 2002 et comparaison par rapport à l'année passée (2001) et à la normale établie sur la période 1971-2000									
Nom	Somd	Soms	Esap	Enc					


NOM				
TILLIA.PA KEITA ABALAK TASSARA AZERORI BADEGUICHIRI BAGAROUA.PA BAMBEYE DOGUERAOUA GALMI GUIDAN IDDER IBECETANE KALFOU KAO MAGARIA (MADAOUA)	$\begin{array}{c} 7.1 \\ 17.6 \\ 0.0 \\ 0.4 \\ 14.0 \\ 53.5 \\ 11.2 \\ 0.0 \\ 0.0 \\ 1.6 \\ 0.0 \\ 4.0 \\ 38.3 \\ 2.9 \\ 0.0 \\ \end{array}$	27.4 49.1 15.4 28.2 79.0 93.0 21.8 16.2 80.9 55.2 55.0 57.9 - - 60.0	-74.5 -11.4 -4.5 48.5 2.1 -74.4 -8.7 -28.9 -21.2 -2.1 21.9 - -	-19.7 -20.3 - 13.9 - - - - - -
MALBAZA	32.9	106.9	-0.6	- 14 0
MANZOU (MADAOUA)	16.2	- 106.9	55.3	14.0
TAMASKE	14 0	34.2	-53.8	-36.6

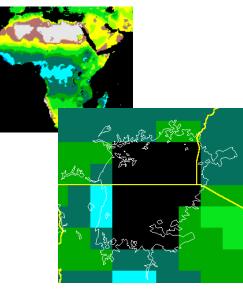
Régions	Nbre de	Semis décade	Villages ayant semé (3 ^e décade de juin)					10.5	- -11.3	-	
	villages	précédente	2 002		2 001		ECART		51.5 151.6	- 80.8	-
·	agricoles	(2 ^e d-06-02)	Nombre	Taux	Nombre	Taux	Nombre	Taux	67.6	1.9	-
AGADEZ	217	0	0	0	0	0	0	0	- 64.3 30.3	-34.8	- -47.5
DIFFA	559	37	37	7	388	69	-319	-62	45.6	-19.0 -19.5	-11.7
DOSSO	1 376	1 218	1 331	97	1 257	91	+74	+6	84.2	0.3	-33.0 18.3
MARADI	2 183	1 491	1 569	72	1 459	67	+110	+5	33.2	-40.0	-54.0
TAHOUA	1 380	889	1 129	82	1 214	88	-85	-6	48.4 48.5	-41.5	-
TILLABERY	1 658	1 290	1 327	80	1 495	90	-168	-10	10.7	-35.2	-21.0 -41.9
ZINDER	2 685	587	967	36	1 785	66	-818	-30	9.4 7.5	-62.7	- -61.0
C.U.N.	26	26	26	100	26	1	Field reports				-
TOTAL NIGER	10 084	5 538	6 386	63	7 603	7					-47.8

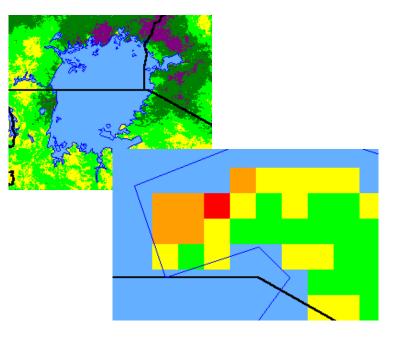




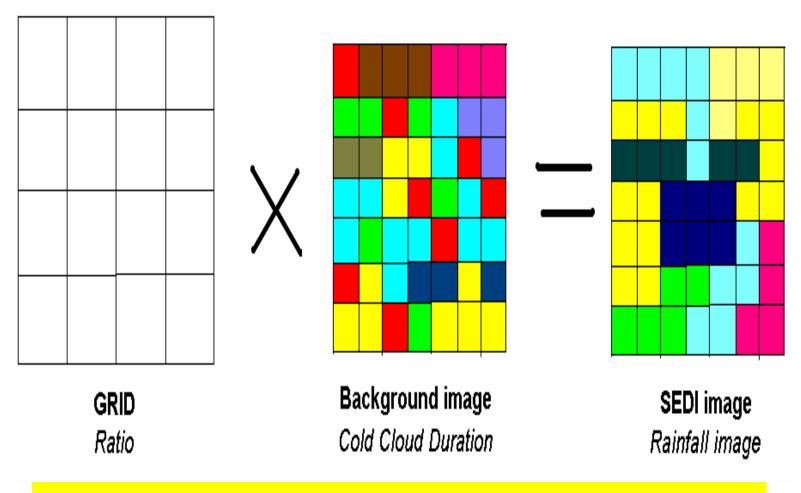

Global Water Stress Map

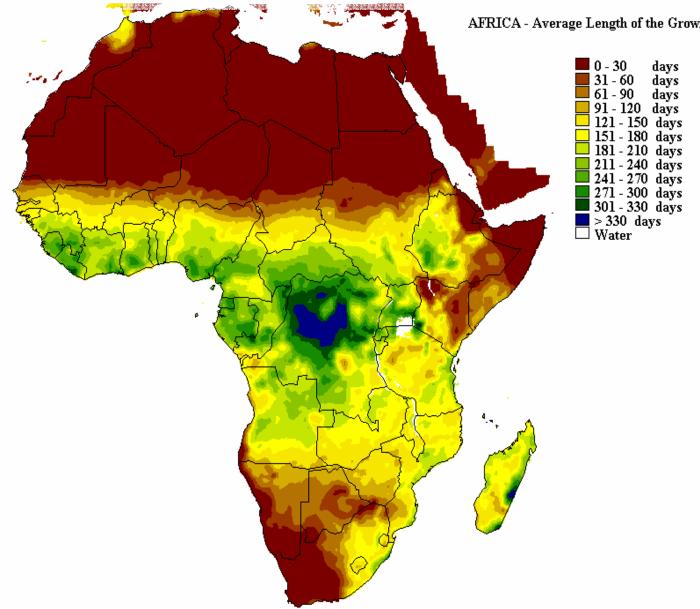
Not suitable for agriculture or no growing season in January-March



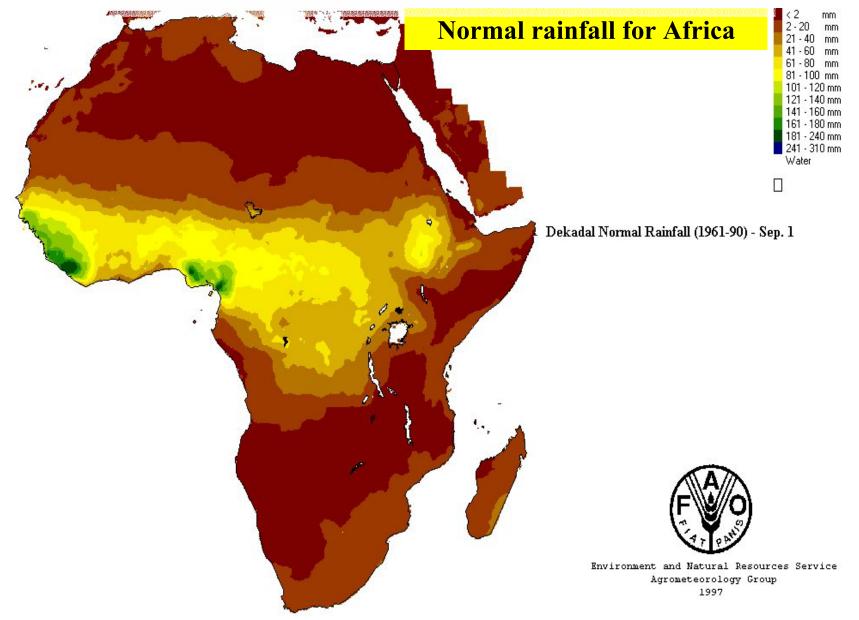

Vector-base geo-referenced data

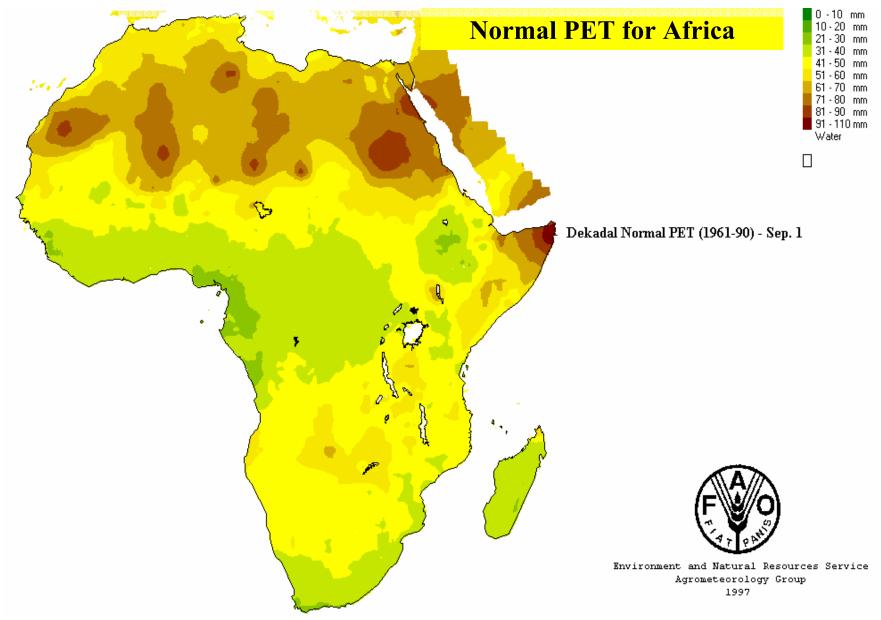
Raster-base geo-referenced data

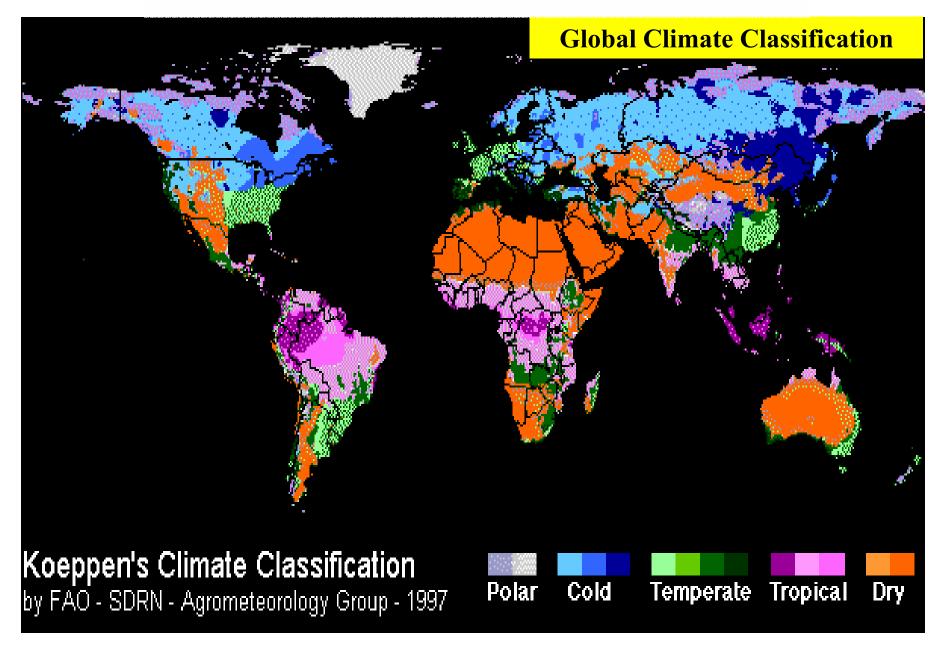

Scaling down: increasing spatial resolution



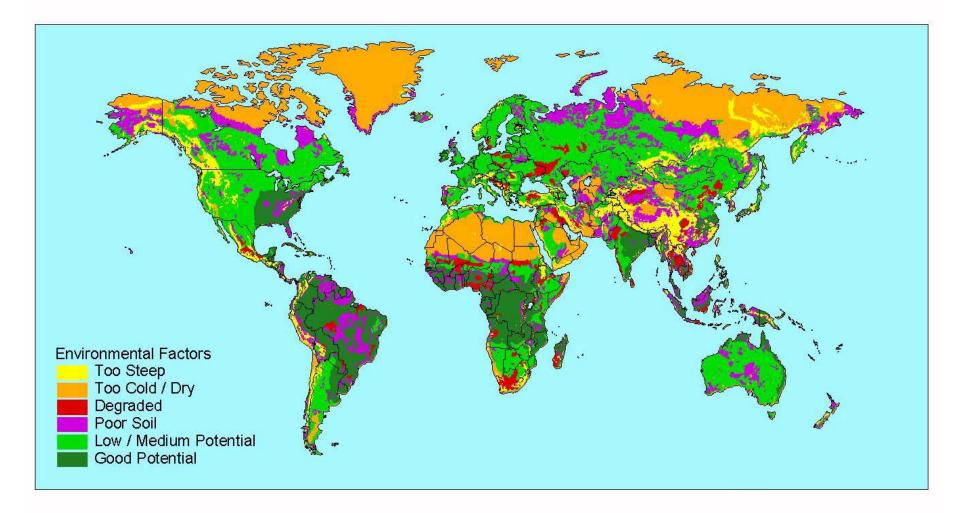
Satellite Enhanced Data Interpolation (SEDI)


- Module for AgroMetShell and WinDisp
- Combination of any point data with correlated background "surface"
- Error estimate




Creating the Satellite Enhanced Data Interpolation SEDI image from ratio grid and background image

AFRICA - Average Length of the Growing Period (.5 PET)



Geo-referenced datasets

Major Global Environmental Potential and Constraints

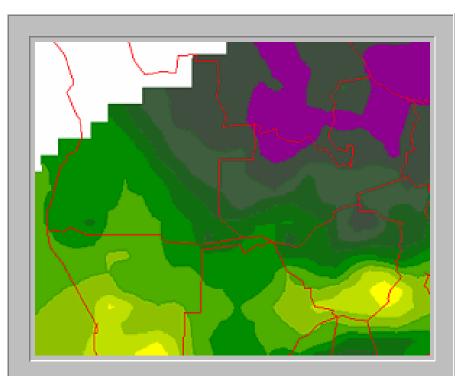
For Agricultural Production

Technical options

• Agro-meteorological and remotely-sensed data are integrated at all levels whenever possible: at the level of data (rainfall, phenology) and at the level of products (area averaging of yields)

• Gridding is done after modelling, under the assumption that there exist variables, such as NDVI, which are at least qualitatively linked to crop condition in a given area. If this assumption does not hold in quantitative terms over large areas is not relevant for the interpolation procedures adopted. This also assumes that such factors as soil fertility and the effect of greater soil holding capacity is captured by NDVI.

• The time step mostly adopted is the dekad.


Technical options

• Results are calibrated against agricultural statistics through empirical yield functions. It is clear that the accuracy of the forecasts cannot possibly be better than the agricultural statistics used to calibrate them. There is thus some uncertainty about the precision, 10% to 30% is probably a good guess. At the scale at which we work, e.g. districts, provinces, etc., models developed at the field level do not apply.

• The "agro-meteorological model" under the flowchart is thus usually very simple. It aims more at assessing growing conditions through value-added "water balance parameters" then actually simulating crop-weather-soil interactions. It is, therefore, justified to use empirical yield functions which, in addition, avoid to touch on the most difficult issue of geographic scale effects.

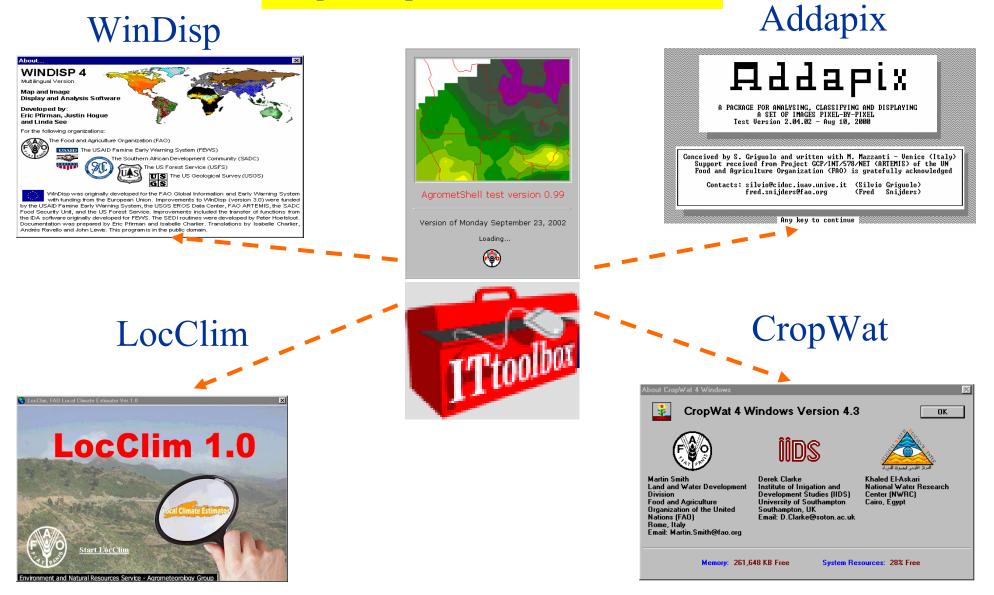
Technical options

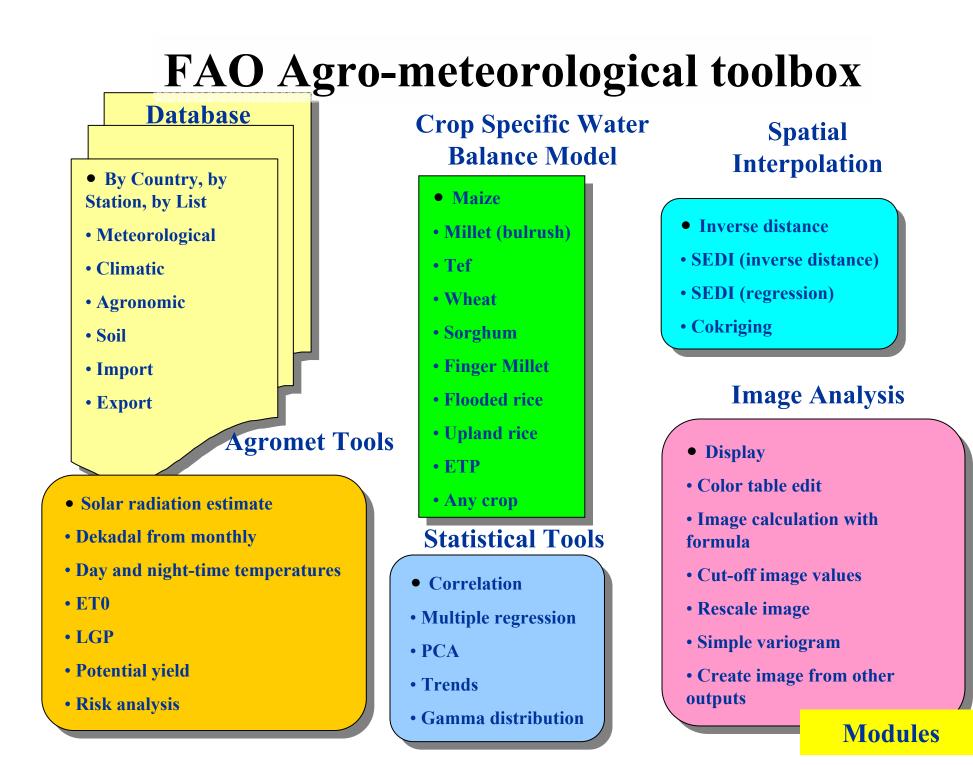
• Tools are modular, i.e. the crop forecasting system uses a number of software tools that carry the analysis from the data to the final production estimate. Any specific tools can be changed without touching the whole structure of the system: the system remains light and easily up-gradable and maintainable. This is facilitated by standardisation through common file names and structure.

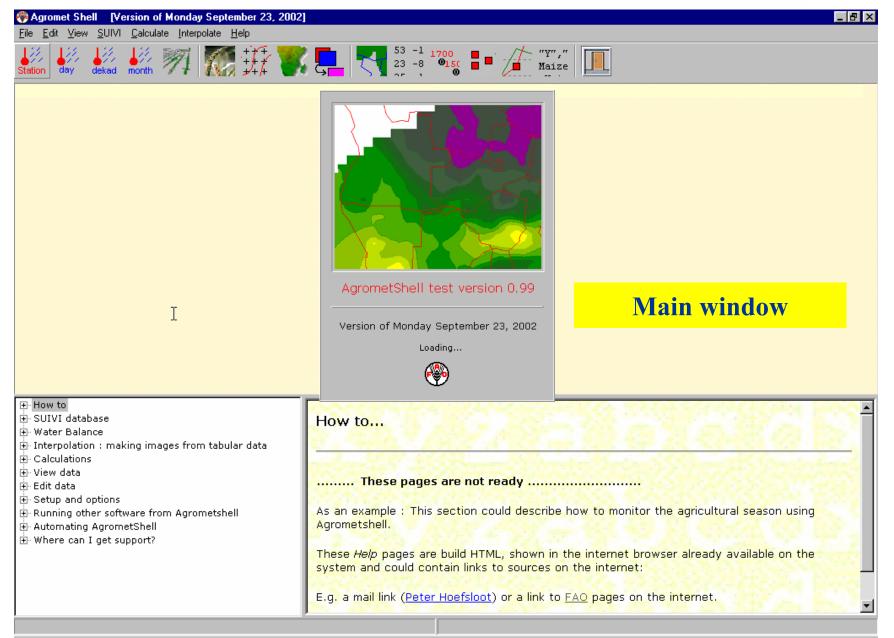
AgrometShell test version 0.99

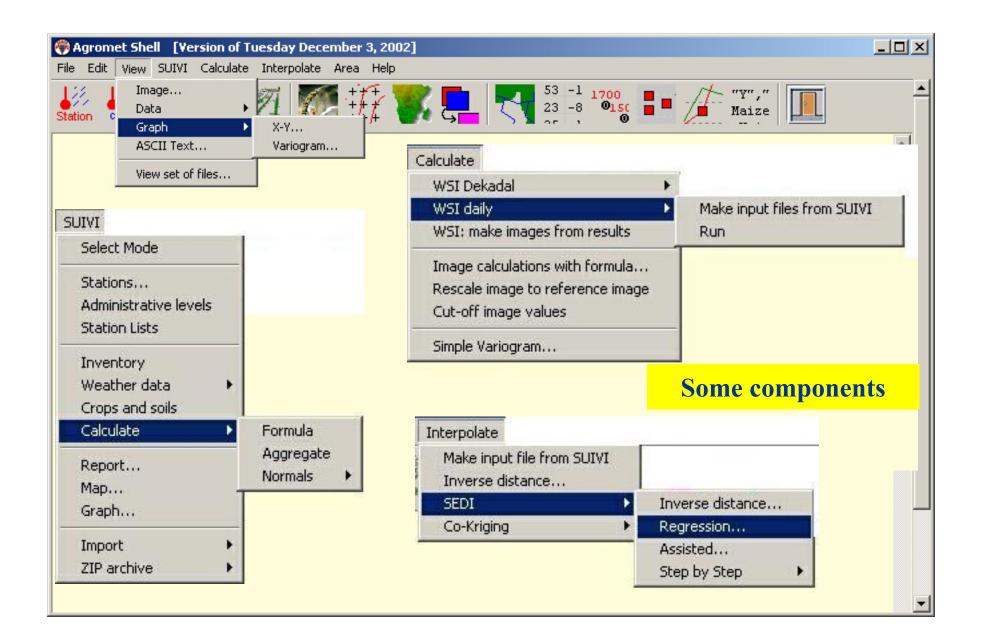
Version of Monday September 23, 2002

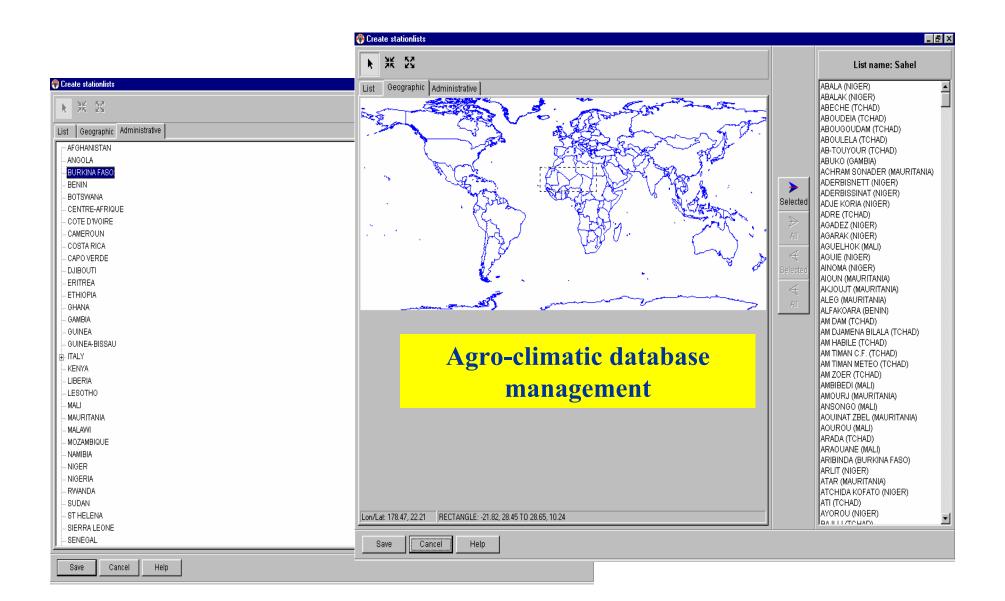
Loading...

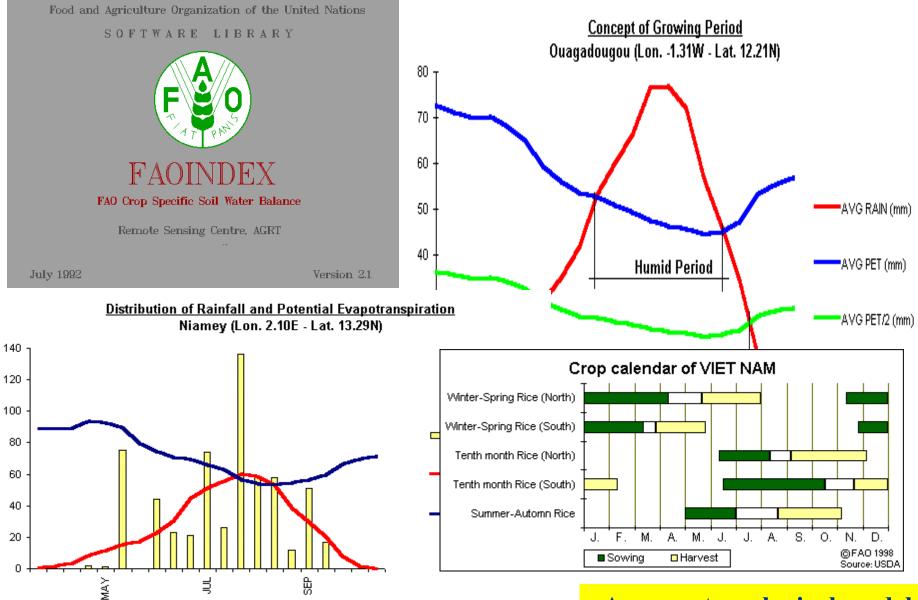



AgroMetShell




- Free-ware software
- Modularity
- Standard file formats
- Training support
- Technical support
- Long-term sustainability


Import-Export links of AMS toolbox

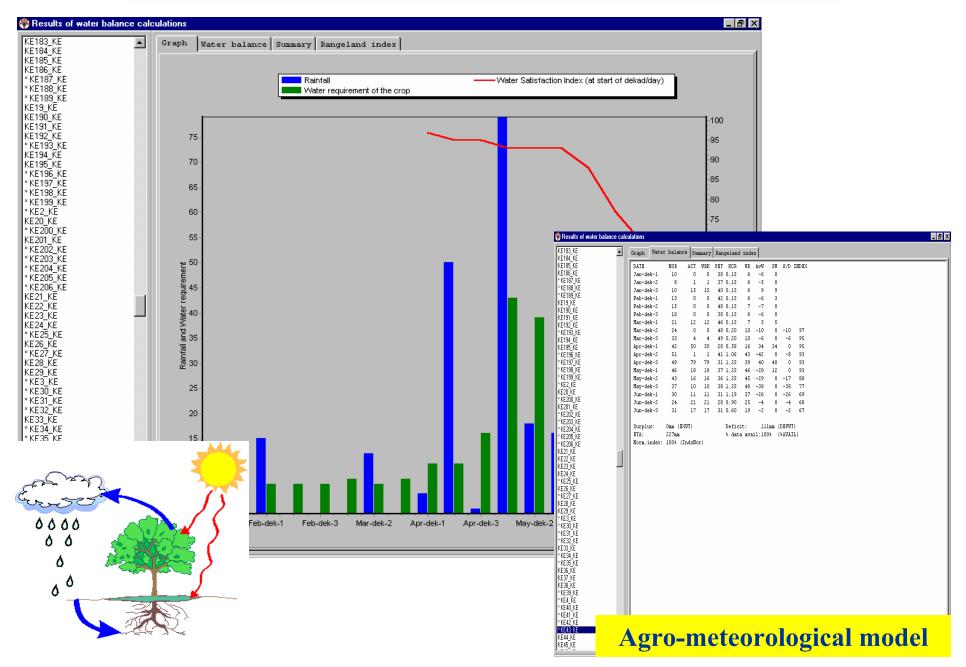


	wer [c:\agrometshell 0.99\test6\	\bf2x02oa.	dat]												_ 8 ×			
Add Image /	A <u>d</u> d Data Add <u>G</u> raph Add <u>T</u> ext																	
▶ 洸	- 🐡 🚔 🔀 🏵 🤇	$\gg \sim$				ø												
Burkina Faso	; Millet (bulrush); Burkina Faso; De	kadal Bainfa	dl: Burk	ina Faso:	Dekadall	Bainfall	Burkina Faso; Nor	mal Bainfa	ll Burkir	na Faso; PE	T · 2002	Burkina	Faso; PE	T · 2003	Burkir 🖌 🕨			
Line No		LON		ALT	Тинс	Efra	· · ·		Pldek		1.0	1-0	1 000,1 2		k6			
Line No	"ARIBINDA BF"	-0.87	14.23	370	-999	-999		Cvcle -999	-999	-999	-999	-999	-999	-999	-999			
4	"BAGASSI BF"	-3.30	11.75	280	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
5	"BAGUERA BF"	-5.42	10.53	315	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
6	"BAM (TOURCOING) BF"	-1.50	13.33	264	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
7	"BANANKELEDAGA BF"	-4.33	11.32	329	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
8	"BANFORA BF"	-4.77	10.63	284	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
9 10	"BANFORA AGRICULTURE BF" "BANI BF"	-4.77	10.62	270 310	-999	-999		-999 -999	-999 -999	-999 -999	-999	-999 -999	-999	-999	-999			
11	"BARABOULE BF"	-1.85	14.22	308	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
12	"BARSALOGHO BF"	-1.07	13.42	330	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
13	"BATIE BF"	-2.92	9.88	298	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
14	"BAZEGA BF"	-1.33	11.73	300	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
15	"BEREBA BF"	-3.68	11.62	291	-999	-999		-999	-999	-999	-999	-999	-999	-999	-999			
16	"BEREGADOUGOU BF"	-4.73	10.75	331	-999	-999	2 SEDI Viewer [c:\	-999	_999 1999 0 lloc	_999	-999 1091 -991	-999	-999	-999	-999			_ 8 ×
17	"BETARE BF"	-1.37	11.43	305	-999	-99	Add Image Add Data	Add <u>G</u> rap	heil 0.994 h Add <u>T</u> ei	escontinvu	noo nasorij							
18 19	"BF02DSSN BF"	-2.93	10.93	274 244	70 70	100	Age Data	Aud <u>G</u> rap	n ∧aa⊥e	M								
20	"BF02LGMN BF" "BF030000 BF"	-2.90	10.15	381	70	100	▶ 米 約	<u>+</u> ?+	53 · 🏵	> 🛞	∧ - ĕ			6				
20	"BF03DBG0 BF"	-3.23	10.40	294	70	100			~			- -						
22	"BF03G000 BF"	-3.18	10.33	335	70		output image data	man ba	ckground irr	nage par	rameters							
23	"BFO3KMPT BF"	-3.43	10.12	457	70	100									4 111			
24	"BF04BNF1 BF"	-4.77	10.62	289	70	100			v c.	000 0			0.600		0	0)		
25	"BF04BNFR BF"	-4.75	10.62	284	70	100	, i i i i i i i i i i i i i i i i i i i	D	- h				2.000	0.000		26.00 0		0.00
26	"BF04BRGD BF"	-4.73	10.75	305	70	100										• <	0.000	
27	"BF04NGLD BF"	-4.80	10.08	274	70	100	(0.000 Ø			\leq		20	00		3 600	•	
28 29	"BF04NNGL BF"	-4.90	10.27	244 520	70	100	0.000				\sim		Ö			3.600	0.000	
30	"BF04RDR0 BF" "BF04SDRD BF"	-4.92	10.97	305	70	100	ø								2,400	\sim	Ū	
31	"BF05BGR0 BF"	-5.42	10.53	366	70	100	· · · · · · · · · · · · · · · · · · ·	00000		1					3.400 0			
32	"BF05LMN0 BF"	-5.35	10.58	358	70	100	í.	1		1						0.	000	
33	"BF05SBKN BF"	-5.02	10.48	305	70	100	9.	68000 0 0		\						\sim		
34	"BF05SND0 BF"	-5.17	10.67	335	70	100	73.30	00		1			150	0 25.00		· 7	<u> </u>] [
35	"BF10DLGY BF"	-0.38	11.97	274	70	100	< "	70.0		- 1			0	2	36	18.00	1	
36	"BF10GNBS BF"	-0.77	11.40	229	70	100	35,20	202.92	0	1			166)	20	0 38 00	6.000	
37	"BF10GRNG BF"	-0.55	11.78	310	70	100	518400912.01	o o a	0 5.20	66.60		324009	8 .00		96,0002	34.200	30,00	
							945 (1996) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1 a a a a a a a a a a a a a a a a a a a	46.50 410.0		00	49.00	16.00	154.0000		81.00	
							645 P. 100 P. 1	1.0	0, 6 6	199-1 N		3° 1362 9	3 (8 05.0	16.00	149 0 0 0 0 0	85.00 0	0	
	,					_	1 0 0 0 0	9.59	8 18 8	102. 196	6088	Bei sind	1200	89 0		6740370 0 449.061.00	195 18 9	
									174.0 2000 - 2	192.4	-10-00 (C	1. 1. 1. 1	88 0	18 8	8798 6		.0, 128,0,20 0 20 00 2	23,90
									0 80 7	9.965	1000	0000	Sec.		1935. d'		100100.0000328959.0193.0	W 78,
								0000	00		tions of the	0.000	6.0		172. 0	⁰ 197.0 178.0 208.0 110 5.0	9.2. 6 6 6 6 6 7 5 9	.10 W
							174 000	15200	4.40	100.00		6.646	1994A≥0		1086.0 .2			60.50 0
							20s.4	12.02	2.6 0	0.00	Sar o. J		1926	124.78	00 **	0 202 16.0 141	100 2 98.0210.0	
									91.982.0	291.1 21	0. X0 - 1	80 148	1.25	89	111.0 129 .0 4	12 <u>1</u> 4		
							₹Ē	0002-96	19230 04	3	ц 	008	ogy (10 0	56.00 0 ^{°°0}	85.00	0 301.0	202.0
								HP 0		289.7 2	26.60 ⁴	9. 68. 0	51.04 0	10 m	0000 71.0			~
								<u>س</u>	000	^υ 012.00 0	68 ⁰ 40	<u>k (188</u> 8)	⁴⁴³ 1 ⁴⁴³			9.00 ~~ 27 209.0187.0	234.0 237. 1 79.0	
									~ 2	76.:	30 🔍 🛉	8.00			119.044	0 453 479 0 0 93.10	0 _{177.0} 0 0	2
									\sim	127020	00 3282 0	မှ <u>၂.</u> ရီ	000-00		11	449.0210.99.00 39.00	145.3 I89.0 0 104.4	~~
	Agro-clin	1 ati	C d	ate	ahs	ISF				68.80-0	-	\sim			See .	195896 29 100 33. 00 0 32 10	144,0 141.0	
		1	v u			-01											158.0	161.0 Ø
																	/ "	-
	man	aσe	me	nt													1	
	111411	ugu						_				_	_	_		K 1 m	1	

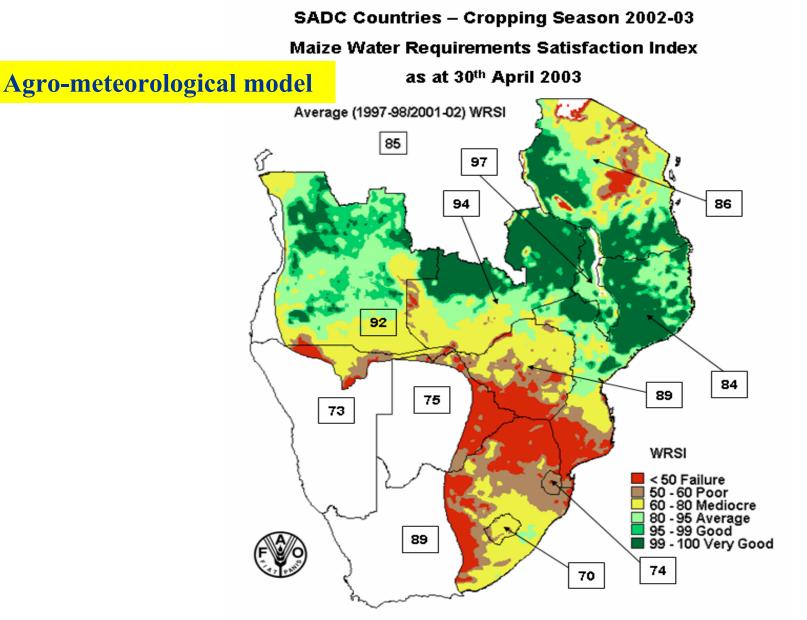
SEDI Viewer [c:\agmet\agrometshell 0.99\test6\ref.img] _ 🗗 🗙 Add Image Add Data Add Graph Add Text 🕨 💥 🥙 🚔 🖾 🛞 🔧 📐 🛓 os2x01xa.dat (z) 💮 Dekadal data _ 8 × × W ► M ÷ Country/List: UGANDA (UG) Year: Parameter: Rainfall (RAIN; 005) in 0.1 mm StatCode Station Jan1 Jan2 Jan3 Feb1 Feb2 Feb3 Mar1 Mar2 Mar3 Apr1 Apr2 Apr3 May1 May2 May3 Jun1 Ju 🔺 ▼ UG9 UG99 LIG100 UG101 UG102 UG103 UG104 UG105 UG106 UG107 UG108 UG10 Π Π UG109 UG110 UG111 UG112 UG113 UG114 Lon/Lat: 28.22, 23.42 Display: 125, 3 Image: 22, 0 UG115 UG116 UG117 UG118 • Normals ► M StatCode Feb3 Mar3 Jun1 Ju 🔺 Station Jan2 Jan3 Feb1 Feb2 Mar1 Mar2 Apr2 Apr3 May1 May2 May3 lan1 Apr1 UG9 UG99 **Agro-climatic database** UG100 F management Total :1083.5 mm Mini : 4.6 mm Maxi : 53.3 mm

Agro-meteorological model

Cropping season: 1996-97

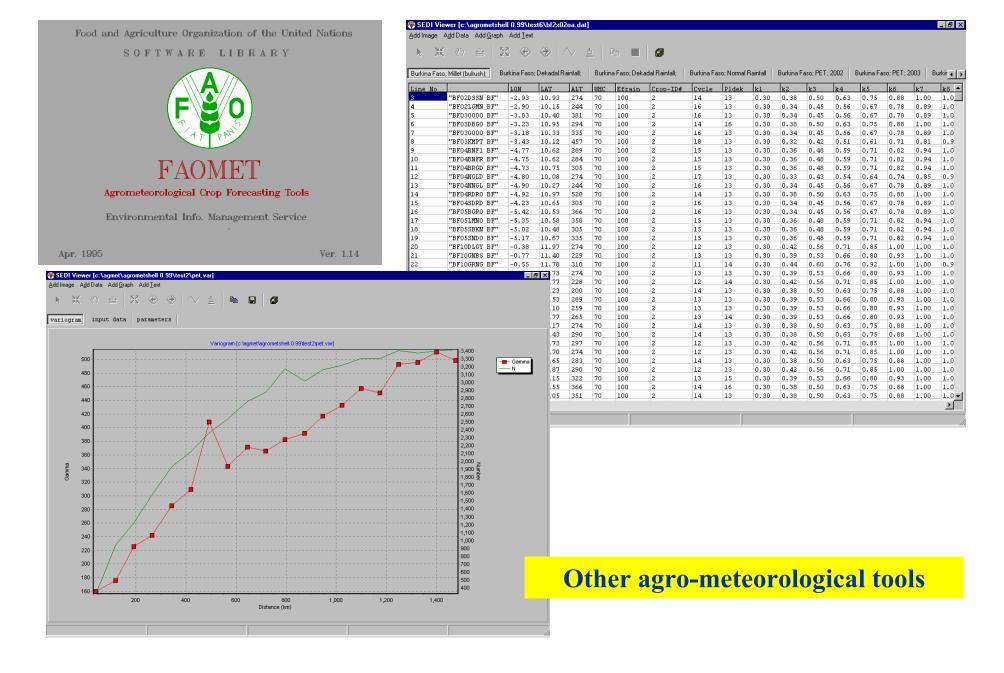

FAO Water Satisfaction Index for Millet (bulrush)

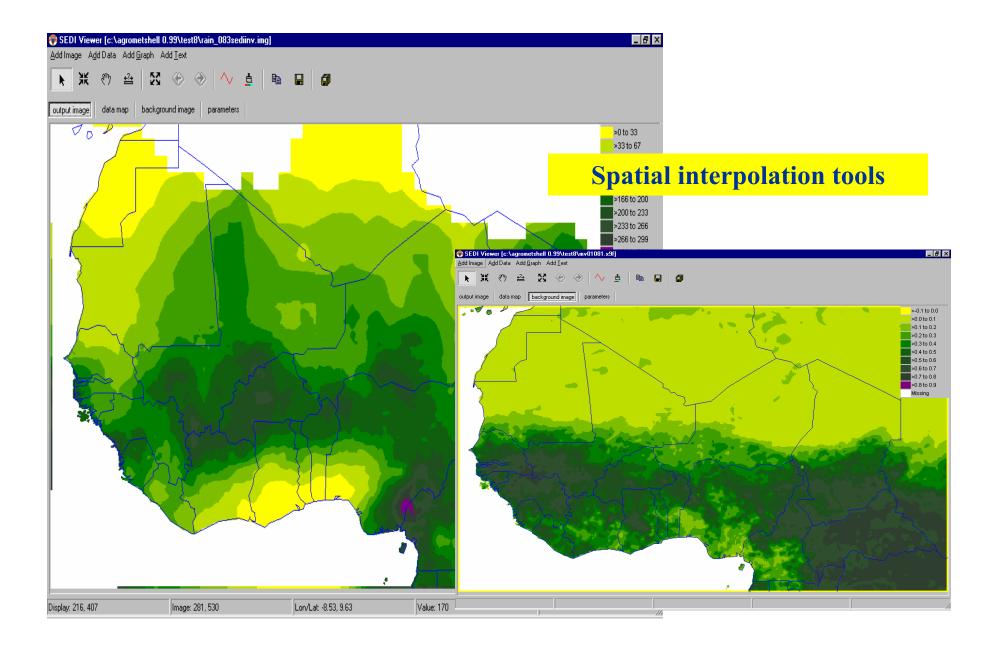

Station Name: NIAMEY-AERO (Elevation: 227 m) Crop type: Millet (bulrush) - Cycle Length: 9 dekads Total water requirements: 359 - Normal water requirements: 359 Planting dekad: 18 - Maximum soil water storage: 60 mm (WHC) Effective/Total rain: 100% - Pre-season Kcr: 0.15

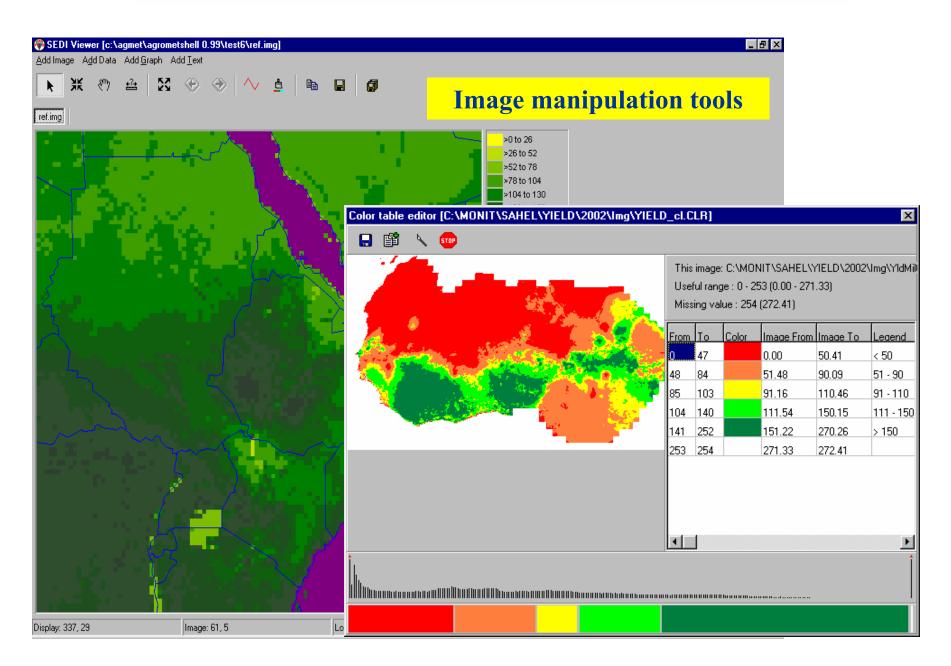

					8	8						
s rement 0 mm (s: 359 (WHC))		0.6 🛨	Millet Yield vs Actual Evapotranspiration Niger (1982-89)							
AvW	SW	S/D	INDEX	0.55			т					
-12	0				y = 0.0019x - 0.0906							
-11	0			_ 0.5 +		T						
-12	0			Willet Xield (T/Ha) 0.4 ■ 0.35 ■ 0.25 ■	R ² = 0.8705	- т 🛉 🖌						
-10 -8	0 0			ξ 0.45 T								
-11	õ			し 0.4 🕂								
-12	ŏ			Σ	- /	* +						
62	60			<u></u> 0.35 +		\bot	YIELD					
-11	48			≿ 0.3 ↓								
33	60			t "T								
0	60 46	0	100	≣ 0.25 +	•							
-14	46 60	0	100		T		——Linea					
27 -31	60 29	13 0	100 100	0.2 🕇			regres	ssion				
-51 79	29 60	48	100	0.15								
4	60	4	100	•••• T								
15	60	15	100	0.1 🖊								
10	60	10	100	150	200	250	300	350				
16	60	16	100	IJU	200	200	JUU	JUC				
					Actual Evap	otranspira	tion (mm)					

Agro-meteorological model

DEK NOR ACT WRK PET KCR WR A -999 0.15 _ -999 0.15 14 _ -999 0.15 13 _ -999 2 0.15 13 -0.15 13 -999 4 _ 0.15 14 -0.15 14 -0.15 13 0.15 12 -0.15 11 0.32 23 0.51 35 _ 0.71 47 0.9 -0.81 43 -999 39 0.53 29 -999 0.25 14

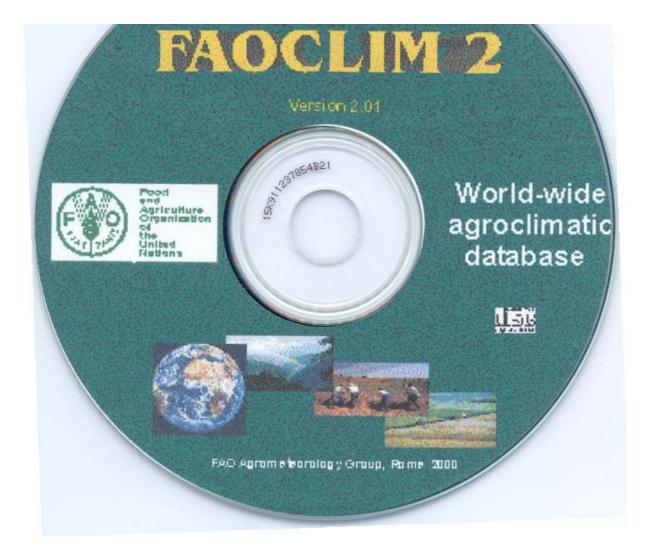

Data source: NOAA, FAO - Prepared by: FAO-SDRN, Agrometeorology Group




Agro-meteorological Maize Yield Estimate

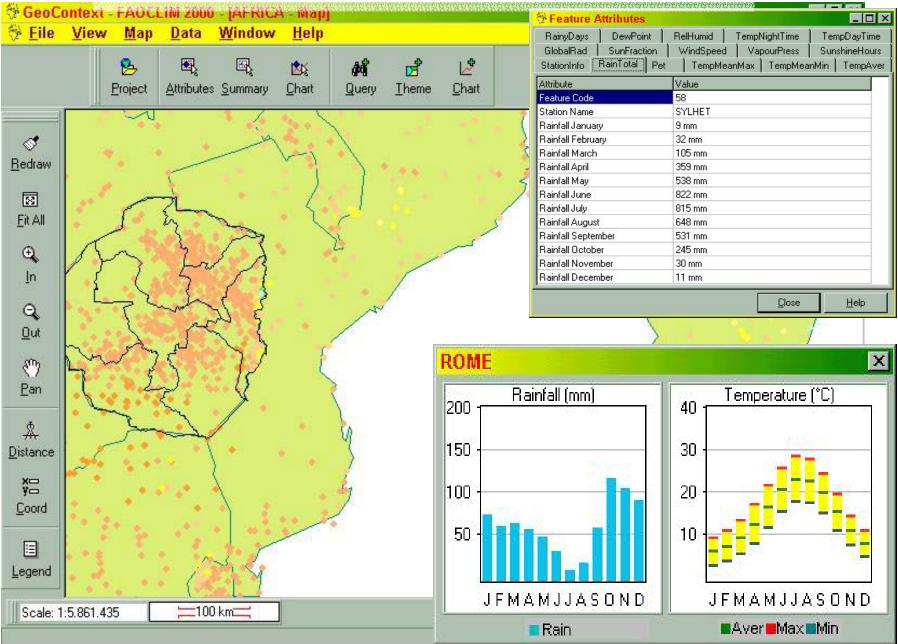
as at 30th April 2003 **Agro-meteorological model** Average Yield (1997-98/2001-02) in T/Ha 0.63 1.50 1.41 1.49 0.64 0.94 1.16 0.12 0.83 1.67 2.53 1.44 Yield (T/Ha)

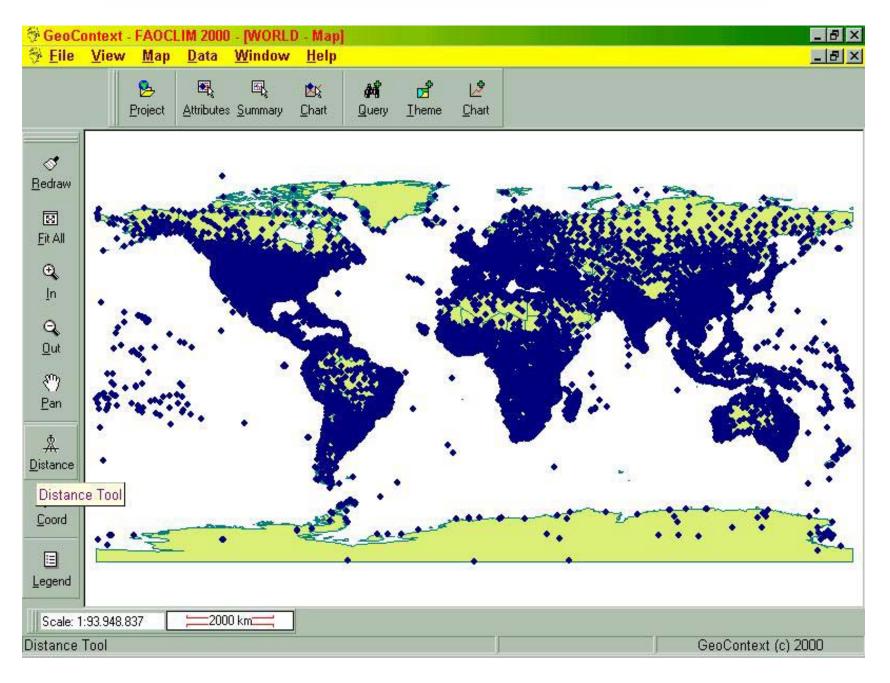
< 0.2 0.2 0.2 0.5 0.5 1.0 1.0 - 1.5 1.5 - 2.0 > 2.0
Data source: NOAA, FAO - Prepared by: FAO-SDRN, Agrometeorology Group

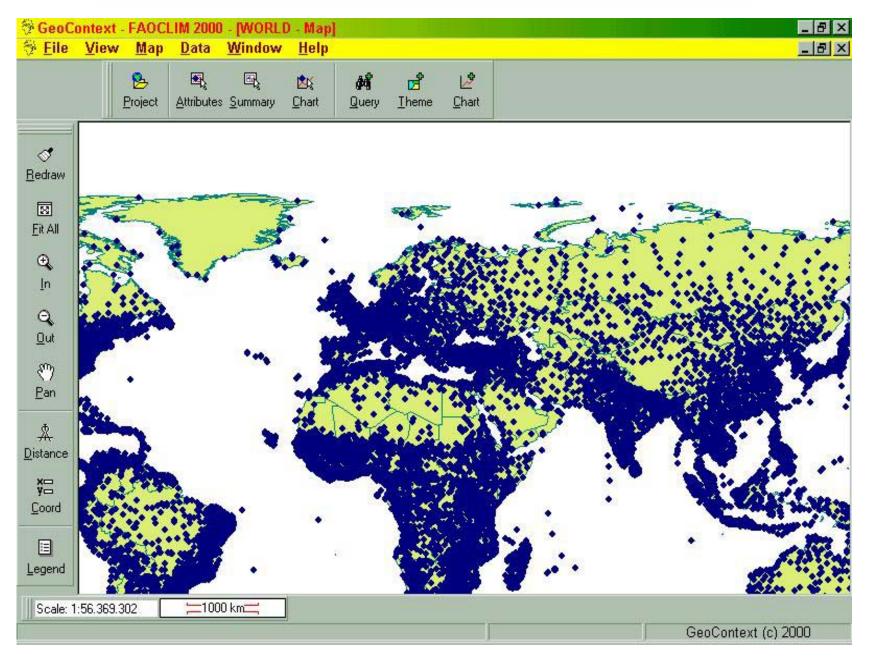


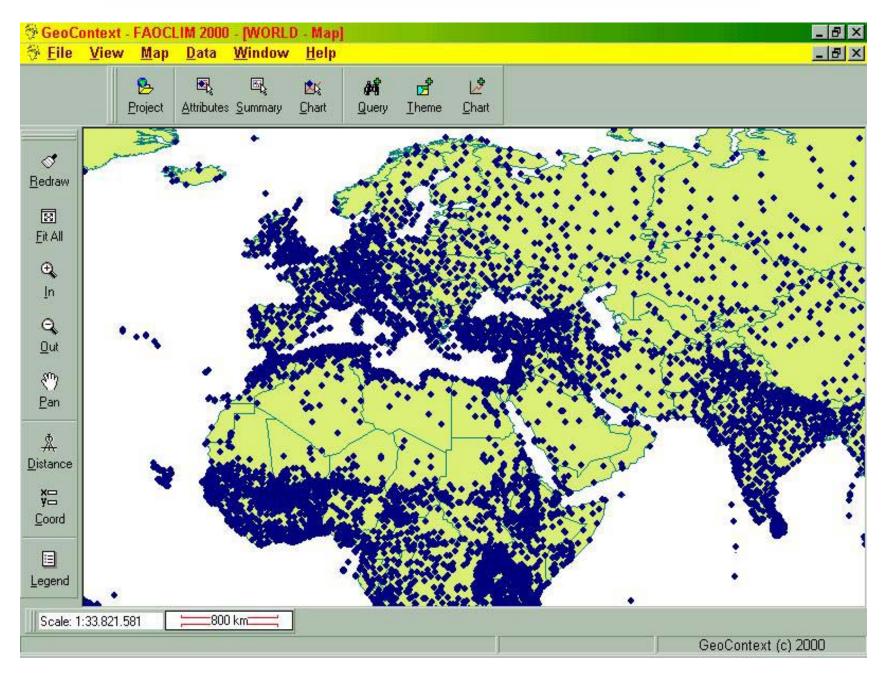
ACDAM

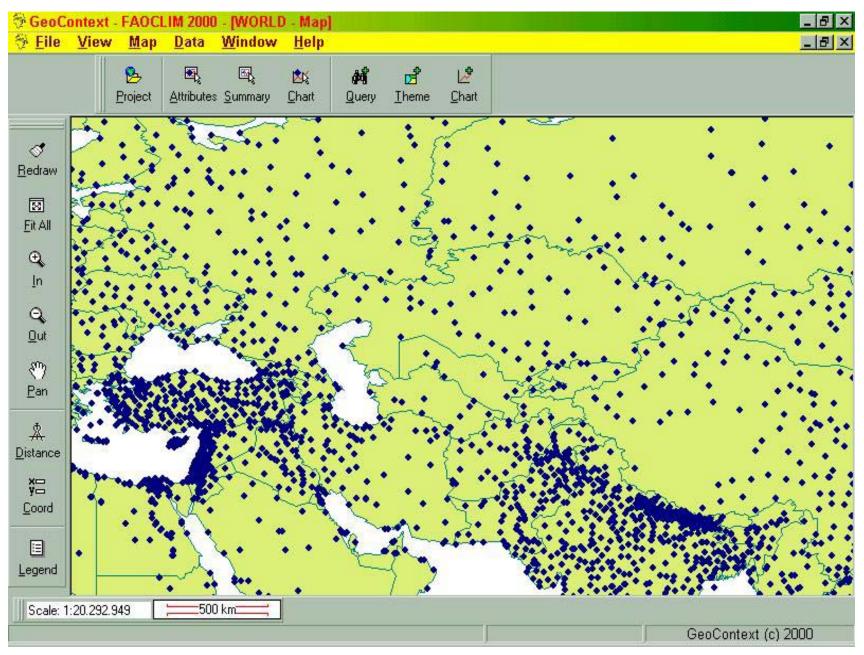
_ 🗆 X


🚯 FAOCLIM 2 - World-Wide Agroclimatic Data Base

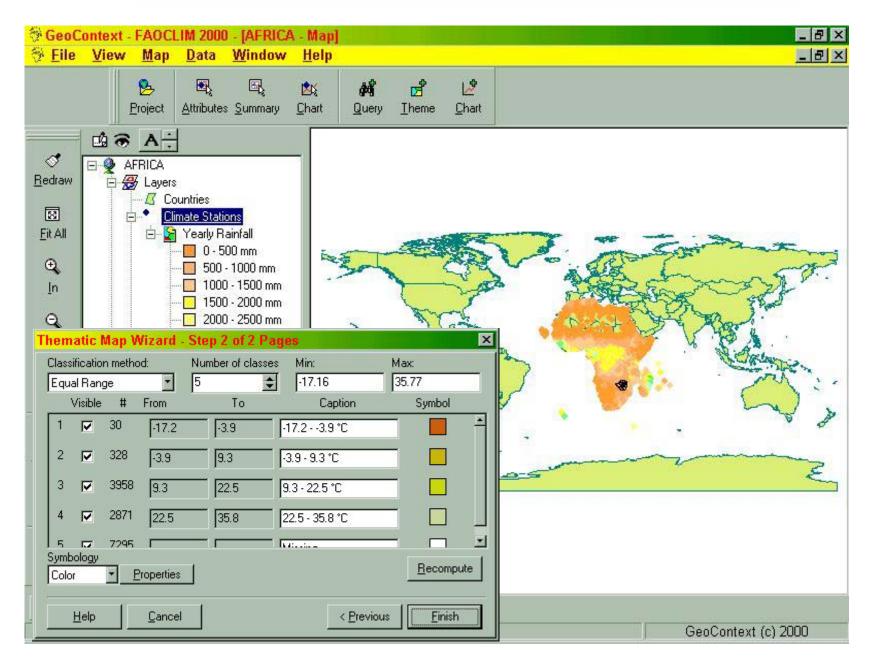


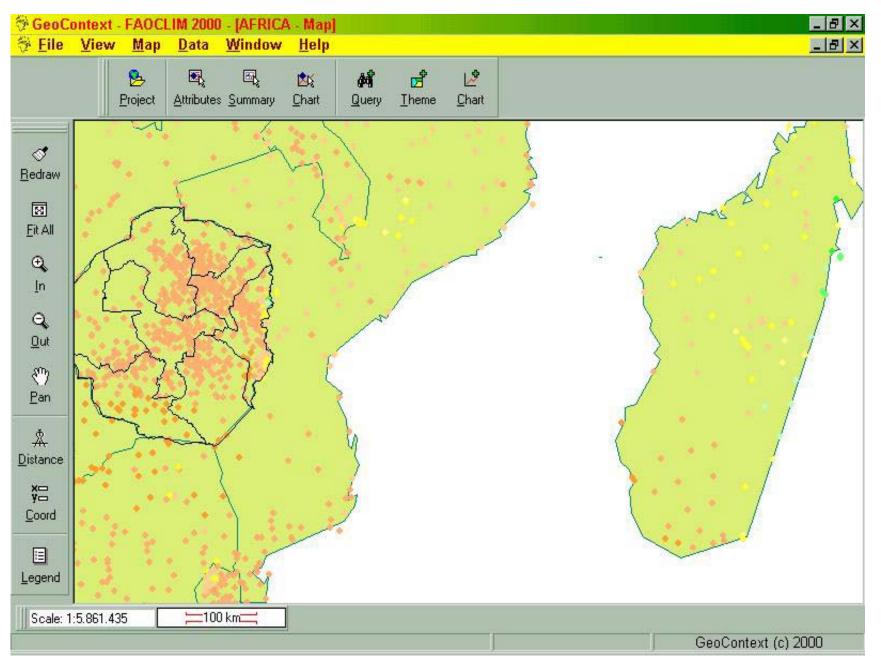

- 28106 stations
- Monthly data for up to 14 parameters
- recalculated averages (1961-90)
- FAOCLIM exports data for further processing
- GeoContext visualizes the data in FAOCLIM


FAOCLIM 2 - World-Wide Agroclimatic Data Base	
<u>File</u> <u>H</u> elp	
* ?	
Select stations to include in Export	Select Variables to Export
By Country Countries All Stations Interactive Map Countries Stations AFGHANISTAN Stations ALBANIA Stations ALGERIA 6722, BAMIYAN ANGOLA 6736, FAIZABAD ANTARCTIC 6736, FAIZABAD ANTIGUA_AND_BARBUD/ 6708, FARAH ARGENTINA 6712, GARDIZ ARMENIA 6712, GARDIZ ARMENIA 6720, GHELMIN AUSTRALIA 6716, HERAT AUSTRIA 6729, JABUL-SARAJ	Simple Extended Mean maximum temperature Mean minimum temperature Mean temperature Mean night-time temperature Mean day-time temperature Total rainfall Dew point temperature Relative temperature Relative temperature
AZERBAIJAN BAHAMAS	Select Coordinates from Globe by rectangle
Select Output Format Select Year(Year Year Series-Tabular Format (Averages) Series-Tabular format (Time Series)	
1999	
CSQS_AVG format (Averages) 1998 1997	an an an the second
CSQS_TS format (Time Series)	
Export File:	
C:\Program Files\FAOCLIM2\Output\EXPORT19.DAT	Coordinates
FAO Climatic Database Extraction Tool	-1.73 47.33 -24.16 QK



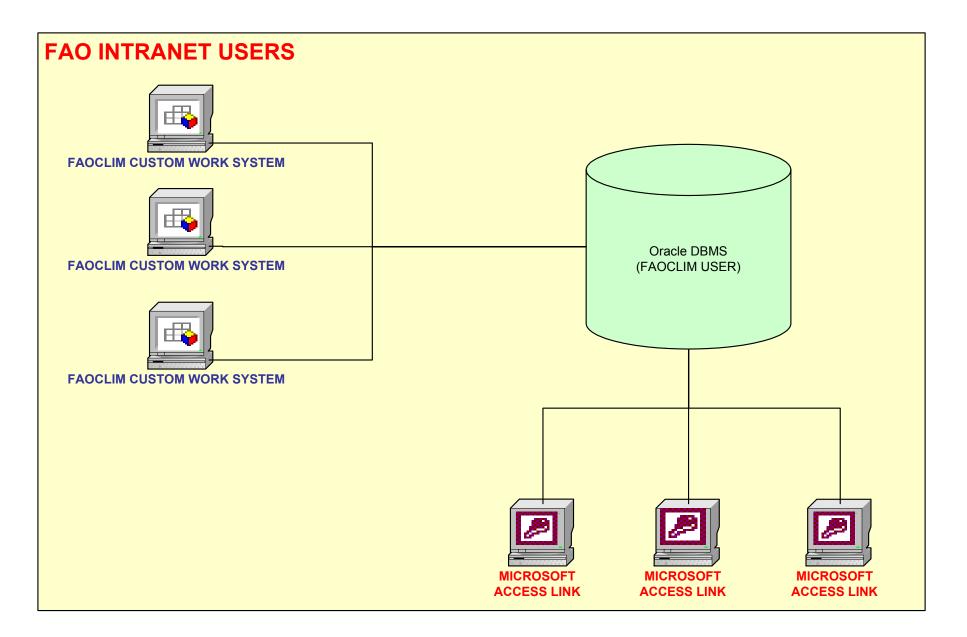
) 🖼 🔚 🛛	🖨 🖪 🚏 👗 🖻	R 🝼 🔊 -	···· 🍓 🥰 Σ f× ੈ↓ ↓ 🛔	1 🔮 🚯	100% - 🙎		
Arial	• 9 • H		≣≣⊠ 9%, *# *?! €	F fF 🗐	• ð • <u>A</u> •		
A2	• = AF	GHANISTAN		A AR ARTING			
Δ	B	C	D	E	F	G	Н
COUNTRY	NAME STATION-II	D WMO-CODE	STN-NAME	LON	LAT	ELEVATION (ELEMENT-
AFGHANIS	TAN AF68BGHL	_ 0	BAGHLAN	68.75	36.2	510	297
AFGHANIS	AF14BST0	40988	BUST	64.37	31.55	780	297
AFGHANIS	TAN AF70FZBD	40904	FAIZABAD	70.52	37.12	1200	297
AFGHANIS	TAN AF22FRH0	40974	FARAH	62.18	32.37	700	297
AFGHANIS	TAN AF38GHZN	40968	GHAZNI	68.42	33.53	2183	297
AFGHANIS	TAN AF45GHLN	1 0	GHELMIN	65.3	34.88	2070	297
AFGHANIS	TAN AF43HRT0	40938	HERAT	62.22	34.22	964	297
AFGHANIS	TAN AF59JBLS	40932	JABUL-SARAJ	69.25	35.13	1630	297
AFGHANIS	TAN AF40JLLB	40954	JALALABAD	70.47	34.43	580	297
AFGHANIS	TAN AF49KBL0	40948	KABUL-AIRPORT	69.22	34.55	1791	297
AFGHANIS	AF15KNDH	40990	KANDAHAR-AIRPORT	65.85	31.5	1010	297
AFGHANIS	TAN AF49KRZM	1 40949	KARIZIMIR	69.05	34.63	1905	297
AFGHANIS	TAN AF39KHST	40971	KHOST	69.95	33.35	1146	297
AFGHANIS	TAN AF68KNDZ	Z 40913	KUNDUZ	68.92	36.67	433	297
AFGHANIS	TAN AF46LL00	0	LAL	66.3	34.5	2800	297
AFGHANIS	TAN AF67MZRS	3 40911	MAZAR-I-SHARIF	67.2	36.7	378	297
AFGHANIS	AF54MMN0	40922	MIMANA	64.77	35.93	815	297
AFGHANIS	TAN AF43QDS0) 0	QADIS	63.42	34.8	1280	297
AFGHANIS	TAN AF65SHBF	R 40908	SHEBIRGHAN	65.72	36.67	360	297
ALGERIA	DZ70DRRI	0 60620	ADRAR	-0.28	27.88	263	297
ALGERIA	DZ20NSFF	R 60560	AIN-SEFRA	-0.6	32.77	1058	297
ALGERIA	DZ63LGR0) 0	ALGER	3.05	36.77	60	297
	DZ67NNB(0 60360	ANNABA	7.82	36.83	4	297

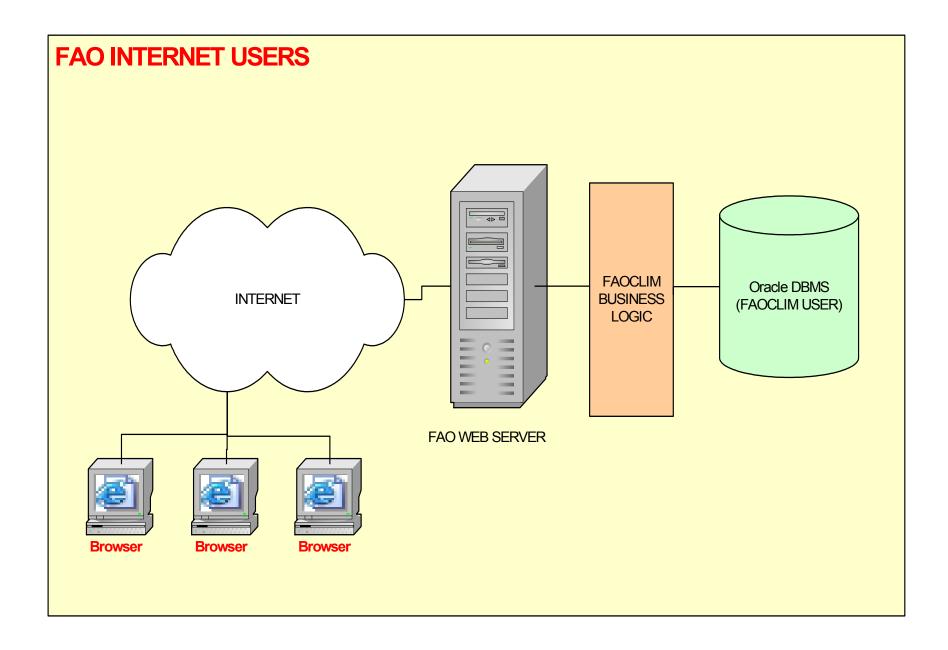



🖅 EditPad Classic
<u>File Edit Print Block Convert Options View H</u> elp
Export1.dat
COUNTRY NAME", "STATION-ID", "WMO-CODE", "STN-NAME", "LON", "LAT", "ELEVATION (m) "
"AFGHANISTAN", "AF68BGHL", "0", "BAGHLAN", 68.75, 36.2, 510, 297, 1958, 12, 0.9, 1.1, 1.1
"AFGHANISTAN", "AF14BSTO", "40988", "BUST", 64.37, 31.55, 780, 297, 1960, 11, 2, 2, 1.9, 1
"AFGHANISTAN", "AF70FZBD", "40904", "FAIZABAD", 70.52, 37.12, 1200, 297, 1963, 8, 0.7, 0
"AFGHANISTAN", "AF22FRH0", "40974", "FARAH", 62.18, 32.37, 700, 297, 1960, 11, 1.4, 1.5,
"AFGHANISTAN", "AF38GHZN", "40968", "GHAZNI", 68.42,33.53,2183,297,1959,12,2.9,2.
"AFGHANISTAN", "AF45GHLM", "0", "GHELMIN", 65.3, 34.88, 2070, 297, 1965, 6, 1, 1.1, 1, 1.7
"AFGHANISTAN", "AF43HRTO", "40938", "HERAT", 62.22,34.22,964,297,1958,12,2.3,2.6,
"AFGHANISTAN", "AF59JBLS", "40932", "JABUL-SARAJ", 69.25,35.13,1630,297,1961,10,1
"AFGHANISTAN", "AF40JLLB", "40954", "JALALABAD", 70.47, 34.43, 580, 297, 1959, 12, 0.9,
"AFGHANISTAN", "AF49KBLO", "40948", "KABUL-AIRPORT", 69.22, 34.55, 1791, 297, 1959, 12
"AFGHANISTAN", "AF15KNDH", "40990", "KANDAHAR-AIRPORT", 65.85, 31.5, 1010, 297, 1963,
"AFGHANISTAN", "AF49KRZM", "40949", "KARIZIMIR", 69.05, 34.63, 1905, 297, 1958, 13, 1, 1
"AFGHANISTAN", "AF39KHST", "40971", "KHOST", 69.95, 33.35, 1146, 297, 1962, 8, 1.5, 1.6,
"AFGHANISTAN", "AF68KNDZ", "40913", "KUNDUZ", 68.92, 36.67, 433, 297, 1958, 12, 1.4, 1.7
"AFGHANISTAN", "AF46LL00", "0", "LAL", 66.3, 34.5, 2800, 297, 1965, 6, 1.1, 1.3, 1.4, 1.5,
"AFGHANISTAN", "AF67MZRS", "40911", "MAZAR-I-SHARIF", 67.2, 36.7, 378, 297, 1959, 12, 1
"AFGHANISTAN", "AF54MMNO", "40922", "MIMANA", 64.77, 35.93, 815, 297, 1959, 11, 1.8, 1.9
"AFGHANISTAN", "AF43QDS0", "0", "QADIS", 63.42,34.8,1280,297,1966,5,3.5,2.1,2,1.7
"AFGHANISTAN", "AF65SHBR", "40908", "SHEBIRGHAN", 65.72,36.67,360,297,1963,8,2.4,
"ALGERIA", "DZ70DRR0", "60620", "ADRAR", -0.28,27.88,263,297, -99999, -99999,1.7,2.
"ALGERIA", "DZ20NSFR", "60560", "AIN-SEFRA", -0.6, 32.77, 1058, 297, -99999, -99999, 1.
"ALGERIA", "DZ63LGRO", "O", "ALGER", 3.05, 36.77, 60, 297, -99999, -99999, 2.1, 2.4, 2.8,
"ALGERIA", "DZ67NNB0", "60360", "ANNABA", 7.82, 36.83, 4, 297, -99999, -99999, 2.1, 2.4,
1: 1 Insert 89100 - 1 D:\\$JUNK\Export1.dat

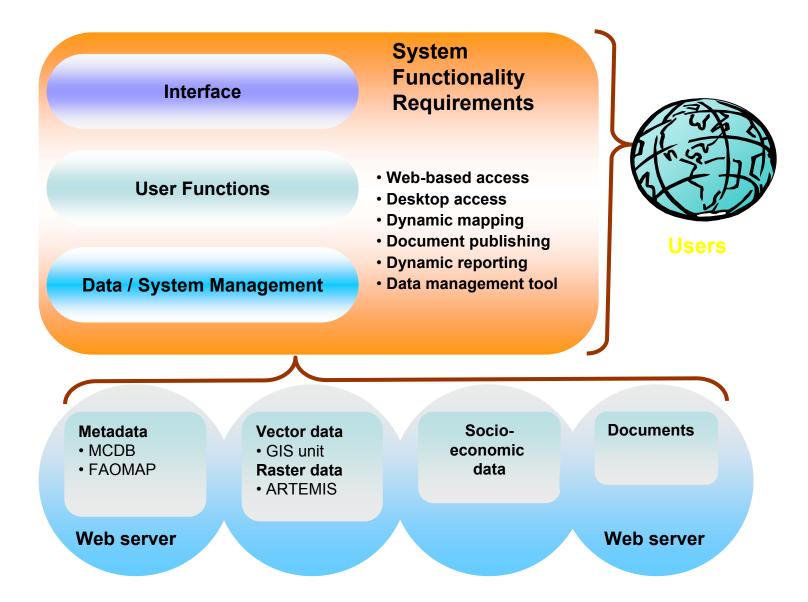
😚 Feature Attributes			×					
RainyDays DewPoint	RelHumid] TempNightTime] TempDayTim	ne]					
GlobalRad SunFractio	n WindSpee	d VapourPress SunshineHou	rs Ì					
StationInfo RainTotal	Pet TempM	leanMax TempMeanMin TempAv	ver Í					
Attribute	Value							
Feature Code	58							
Station Name	SYLHET	SYLHET						
Rainfall January	9 mm	9 mm						
Rainfall February	32 mm	ROME	X					
Rainfall March	105 mm	The second se						
Rainfall April	359 mm	200 r Rainfall (mm)	40 - Temperature (°C)					
Rainfall May	538 mm	200	10					
Rainfall June	822 mm	_ 150 -	30					
Rainfall July	815 mm							
Rainfall August	648 mm	100	20					
Rainfall September	531 mm							
Rainfall October	245 mm	50						
Rainfall November	30 mm							
Rainfall December	11 mm		1.00.87					
		JFMAMJJASOND	JFMAMJJASOND					
		Rain	Aver Max Min					

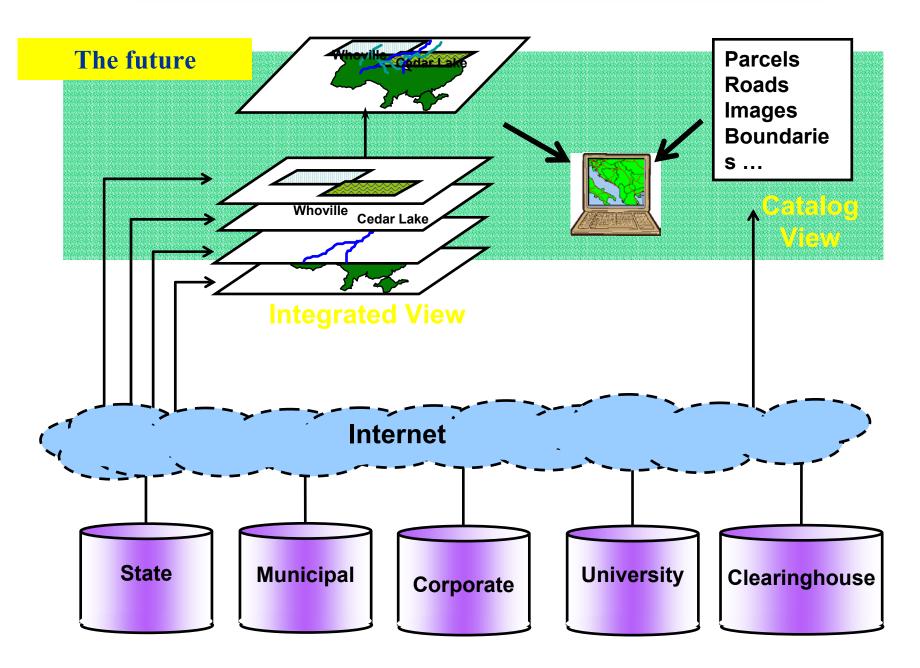
FAOCLIM-2

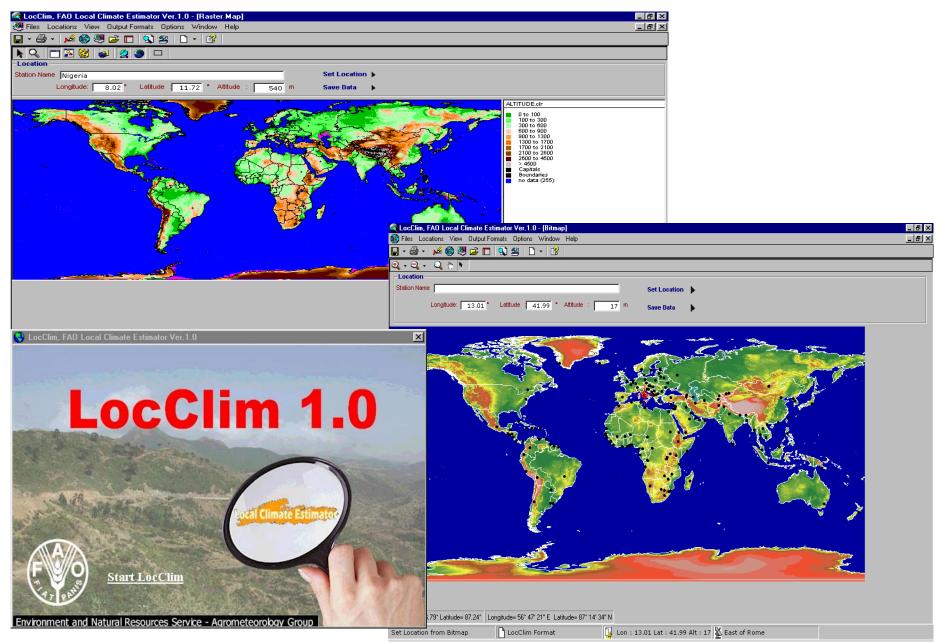

FAOCLIM-2


Faoclim2003

E 🖓 F	AOCLIM 2002 DATA INTER	TERFACE	
	d Data View Data Sett	ettings Windows Help	
n	Clicom Data	FAOCLIM 2002 DATA INTERFACE - [Load Clicom Data]	
ุก	Cru Monthly Data		_ & ×
h	Dwd Monthly Data	Load Data View Data Settings Windows Help	
h	GlobalSod Daily Data		
	Gts Daily Data	- Choose Data Type to Load	
		Choose Data Type and Input File	
	Load Stations Data	Clicom Daily Data Clicom Locada Data Clicom Monthly Data Clicom Average Data Data File Separator ; Data Foliter < none> Data Position On the Columns Wy Lines to Skip 0 Column Header Line	*
		Cancel	
0			m


Faoclim2003

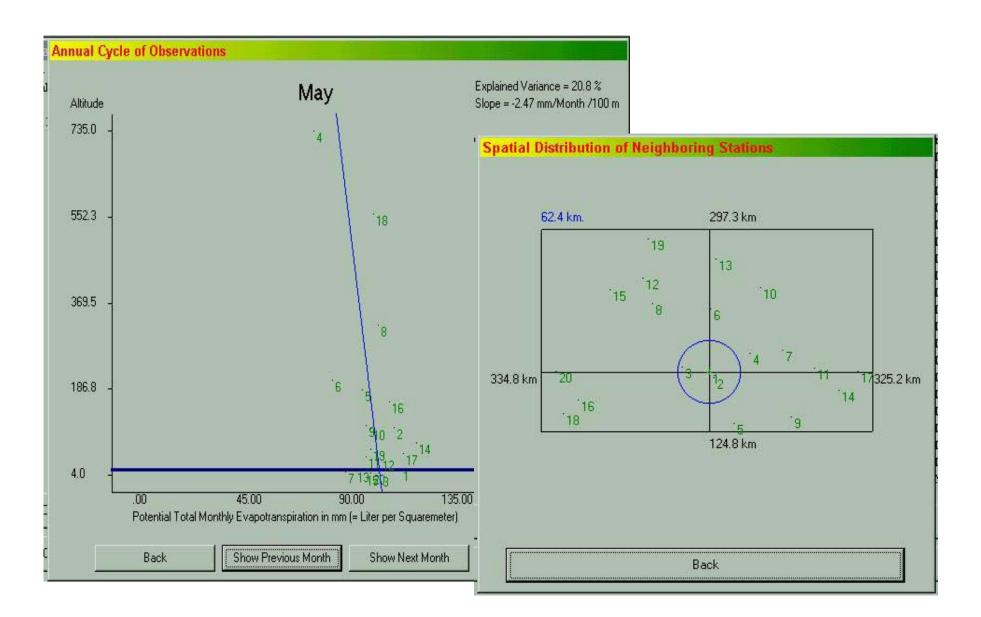

Faoclim2003

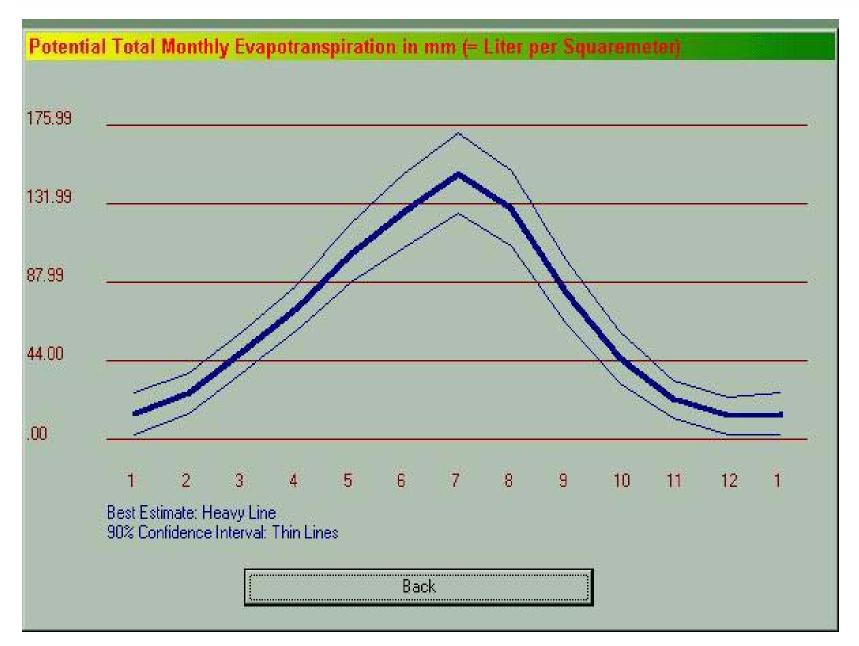


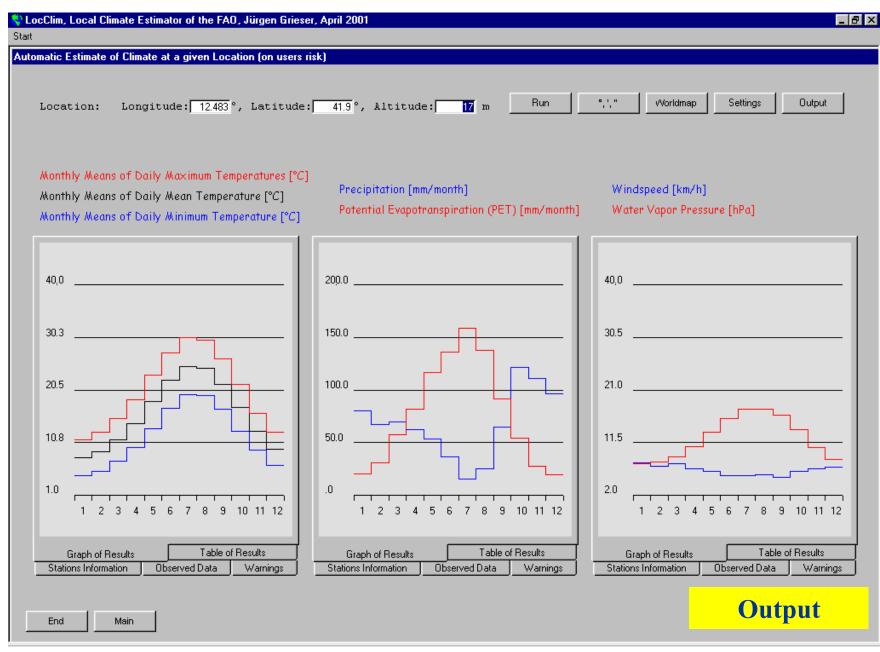
SDRN Geo-Network concept

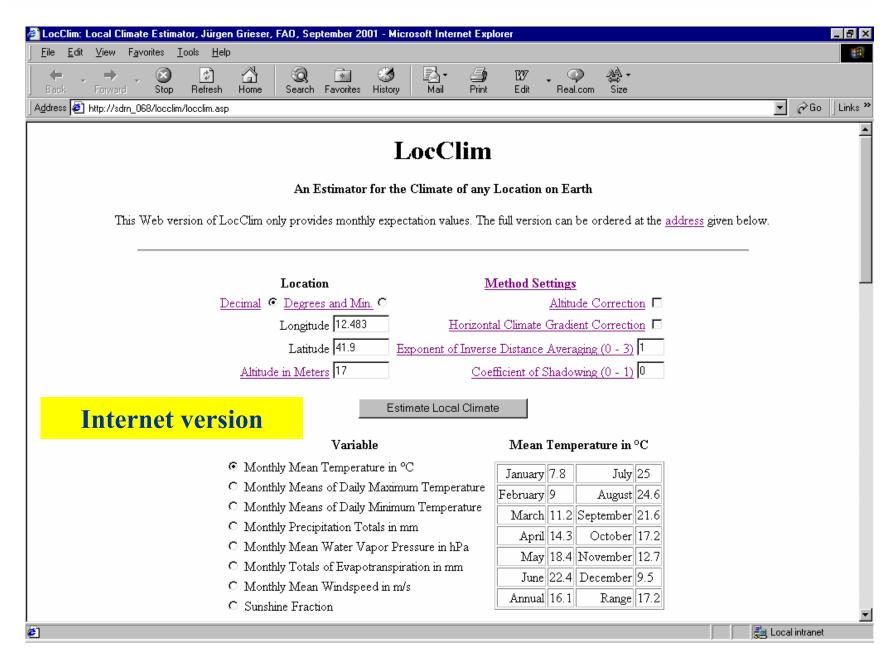


SDRN Geo-Network concept

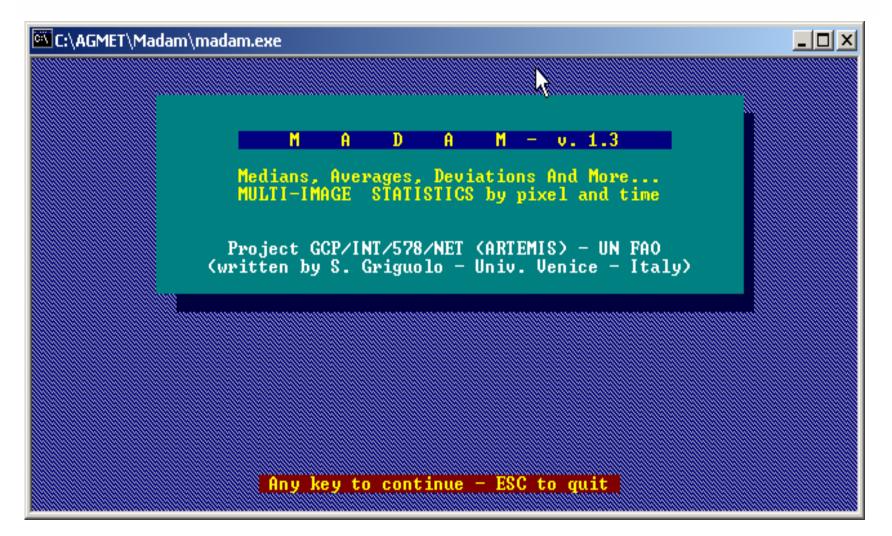



- Estimation of local climatology based on FAOCLIM2 data
- Optimized database for fast access to "neighbors"
- Altitude and geographic gradient correction
- Final version with inverse distance and kriging
- Error estimation



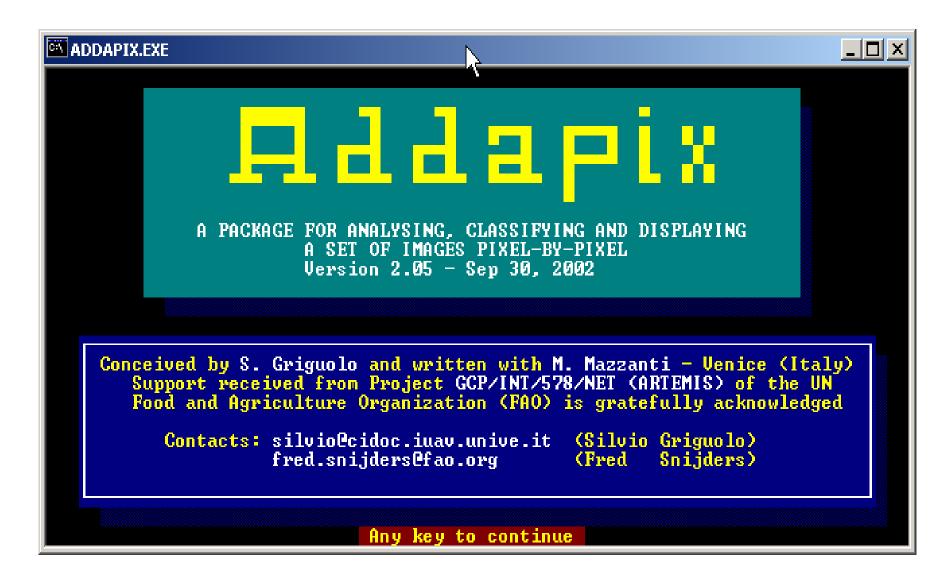

🛞 Bitmap	
Location Set Location Station Name Ethiopia_1 Longitude: 35.52 Latitude : 6.11 Attitude : 1340 m Save Data	
Monthly Mean Temperature in °C	
	ocation 🕨
January Previon Longitude: 13.01 Latitude 41.99 Attitude : 17 n Save Attitude 4000.0 Explained Variance = 88.3 % Slope = -0.42 C/100 m Save Windisp Choose Variable 3050.6 Monthly Mean Temperature in °C Image: Construction of the same set of the	Data
2100.0 21	
1150.0 1150.0 1150.0 10 <td>X</td>	X
Longitude= 90.10° Latitude= 19.89° Longitude= 90° 6' 1" E Latitude= 19° 53' 26" N	

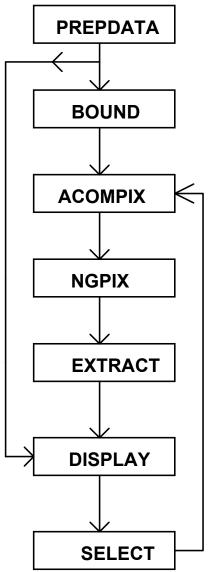
	are the nearest	and the second se			
	ion: Latitu			Longitude = 12.48°,	Altitude = 17.0 m
Varia	able: Potent	ial Total	Monthly Ev	apotranspiration in mm (=	Liter per Squaremeter)
Mr.	Dist (km), 1	Direction.	Altitude	(m), Station Name,	Country
	0.2	U U	17	ROME	ITALY
	15.6	so	105	ROMA-CIAMPINO	ITALY
03 🔽		W	4	CIVITAVECCHIA	ITALY
04 🔽		NO	735	L'AQUILA	ITALY
05 🔽		so	185	PONZA	ITALY
06 🔽		N	205	PERUGIA	ITALY
07 🔽		0	11	PESCARA	ITALY
08 🔽		NW	322	SIENA	ITALY
09 🔽	188.0	so	110	NAPOLI	ITALY
10 🔽	203.1	NO	103	ANCONA	ITALY
11 🔽	208.4	0	44	TERMOLI	ITALY
12 🔽	235.7	NW	38	FIRENZE-PERETOLA	ITALY
13 🔽	237.1	N	13	RIMINI	ITALY
14 🔽	259.3	0	74	FOGGIA	ITALY
15 🔽	262.5	NW	6	PISA	ITALY
16 🔽	267.7	W	159	GUARDIAVECCHIA	ITALY
17 🔽	295.2	0	50	VIESTE	ITALY
18 🔽	303.3	W	558	TEMPIO-PAUSANIA	ITALY
19 🔽		NW	60	BOLOGNA	ITALY
20 🔽	304.8	W	9	AJACCIO	FRANCE
	Choose a Location	Define N	eighborhood	Find Neighbors	Choose a Method
	Choose a Variable	Show C	bservations	Show Spatial Distribution Show Height	Dependency Give Results



MADAM

AICON


View/Create/Edit DEFinition	ns of AICON Types	(.DEF)		? ×
Aicon types	Edit Label: NewLabel	Header Length	Pixel Size meters deg/pixe	dy
AF_HA_1km alb_sw16to8 GH-ASIA8000 LSat7-GaussBoaga LSat7-UTM NASA_ALB	Coo Bytes/Pixel	ling Byte Order INTEL Pixel max value 255	Missing values Cloud values Special value 1	Mask values No_Data values Special value 2
DEFinition Filename Newfile	Slope (Real Value = Slop	Intercept e x Count + Intercept)	Upper-Left Corner O UL_x UL_y	ffset Units Image: Constraint of the second secon
Projection None	Lon Proj. Center Parallel 1 False Easting	Lat Proj. Center Parallel 2 False Northing	● x/y size \	ge Size Vidth
Save Current DEFinit Click on the Help buttor		Help ew, hit F1 or use the '?'	None	Minor Semi-Axis


AICON

? ×

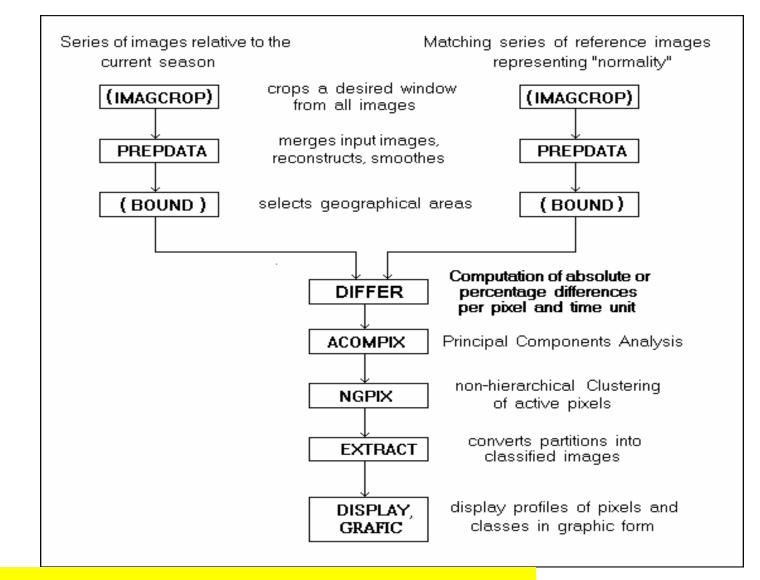
View/Edit/Create IDA Image Types

IDA Type's label	Label	Code	
GENERIC FEWS_NDVI EROS_NDVI	Min value Max value	Slope	Intercept
ARTEMIS_CUTOFF ARTEMIS_RECODI ARTEMIS_NDVI ARTEMIS_FEWS	Missing values	Mask values	Special value 1
NEW_NASA_NDVI VGT1KM(ART) VGT1KM(JRC)	Cloud values	No_Data values	Special value 2
Delete Ida Type	Save	Close	Help

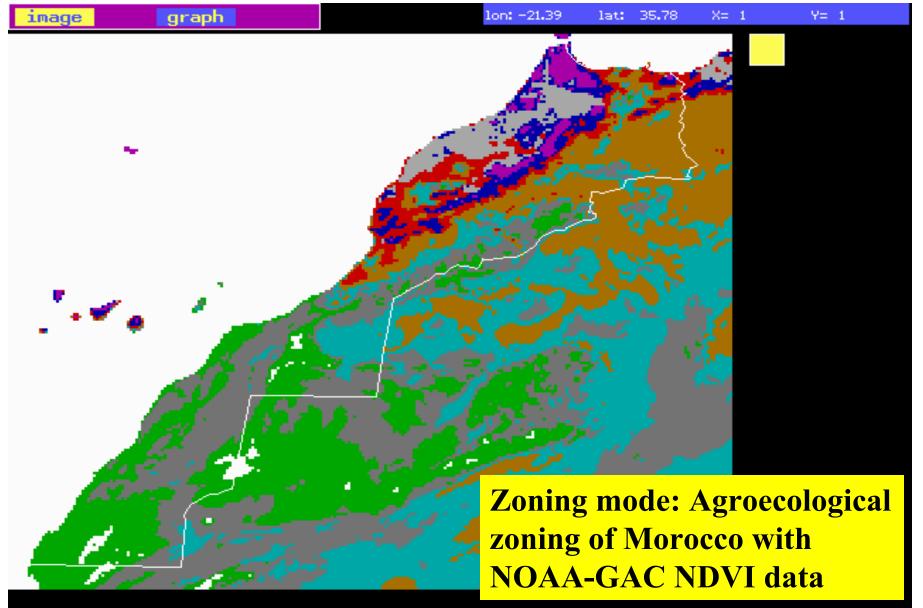
Merges suitably a temporal sequence of images

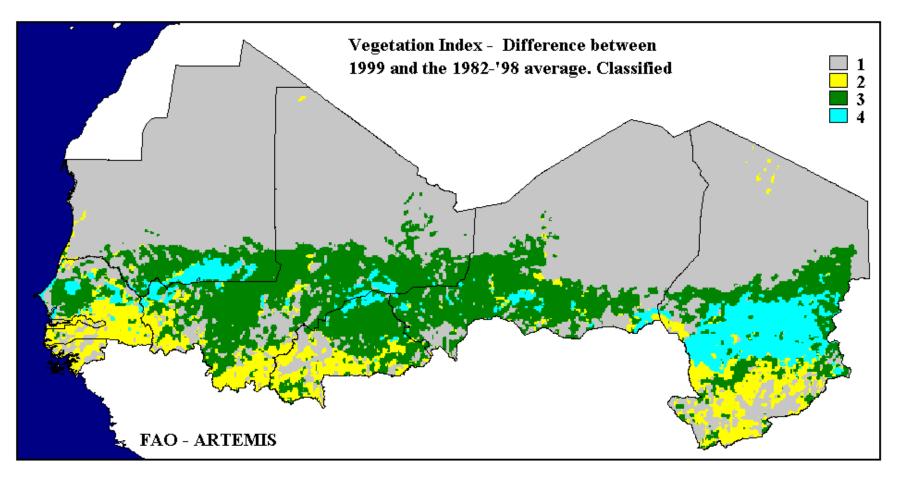
(optional) selects the region(s) to which to restrict the clustering procedure

Principal Components Analysis of the table pixels x time variables

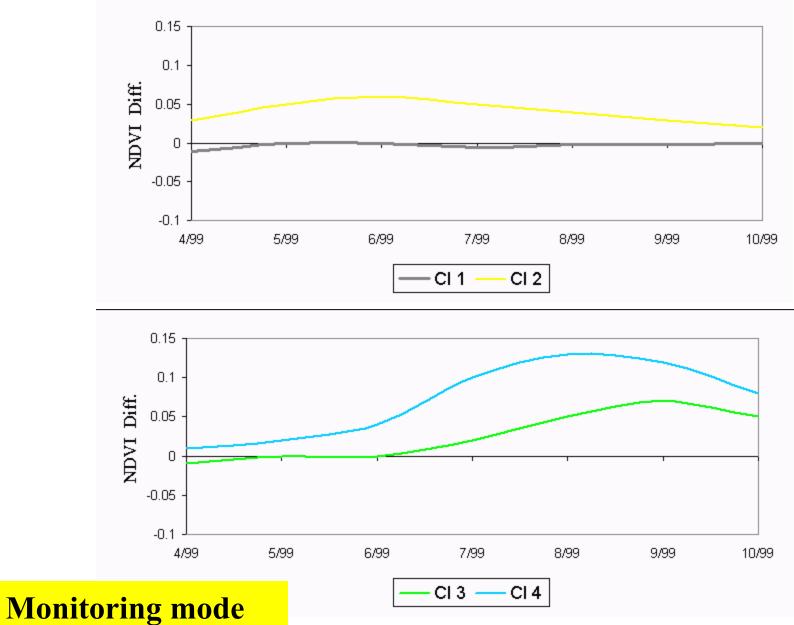

Non-hierarchical Clustering of Pixels

Converts any partition computed by NGPIX into a classified image for DISPLAY


Displays profiles of pixels and classes in graphic form

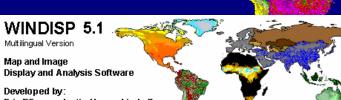

Selects only pixels belonging to some classes for further processing

Program chaining for zoning mode



Program chaining for monitoring mode

Monitoring mode: Assessment of 1999 Cereal Production in Western Africa with NOAA-GAC NDVI data



WinDisp - Display and analysis tool

🛐 😪 🕃 👗 🖻 🛍 🦪 🔍 🔍 🆓 🙊 🖗 🚺 🔤 🗏 🕂 ハ い ロ A 🛛 • 🔹 🧃

SEDI 👻

Header 👻

Stats 👻

Eric Pfirman, Justin Hogue, Linda See and Luc Verelst

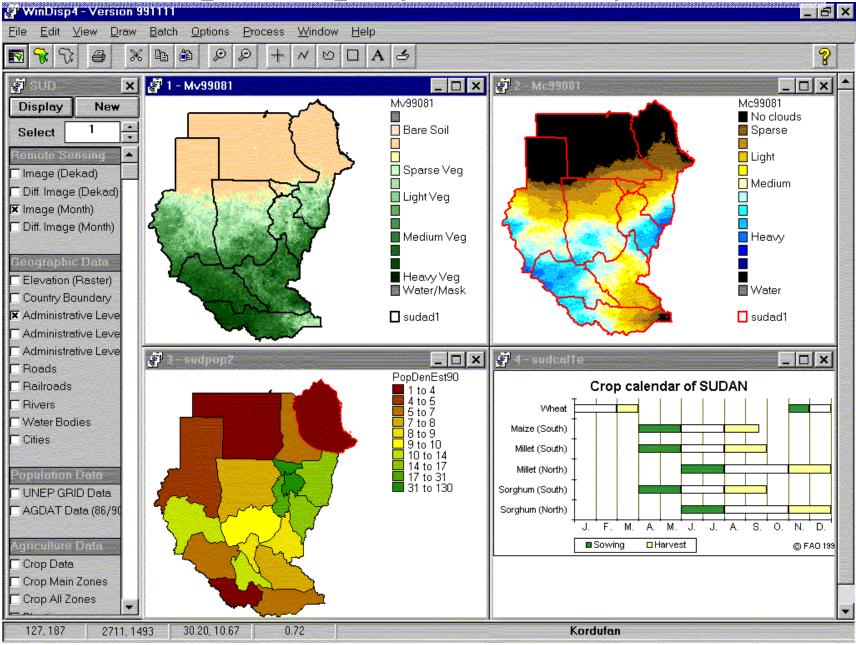
For the following organizations:

Series 👻

Images -

The USAID Famine Early Warning System (FEWS)
The Southern African Development Community (SADC)
The US Forest Service (USFS)
The US Geological Survey (USGS)

WinDisp was originally developed for the FAO Global Information and Early Warning System with funding from the European Union. Improvements to WinDisp (version 3.0) were funded by the USAID Famine Early Warning System, the USOS EROS Data Center, FAO ARTEMIS, the SADC Food Security Unit, and the US Forest Service. Improvements included the transfer of functions from the IDA software originally developed for FEWS. The SEDI routines were developed by Peter Hoefsloot. Documentation was prepared by Eric Pfirman and Isabelle Charlier. Translations by Isabelle Charlier, Andrés Ravello and John Lewis. This program is in the public domain.


Release 5.12

Spot-Vegetation 11-20 August 2003

4-km resolution

WinDisp - Display and analysis tool

VAST

V.A.S.T.3 - Vegetation Analysis in Space and Time - 3 Version 3.0, September 1994 Written by Felix F. Lee

Usage:

VAST3 <cc> <yr> [inpath] [outpath] [ext] [st_mon] [ed_mon] [pbase] [ptol]

cc = 2 character country code (e.g. ML, CH) yr = 2 digit year (e.g. 82, 88, 92) inpath = up to 15 characters input data path (full path) outpath = up to 15 characters output data path (full path) ext = up to 3 characters file extension (e.g. IMG, SNI) st_mon = starting month; the first dekad of this is used. ed_mon = ending month; the third dekad of this is used. pbase = base NDVI count unit value for starting date ptol = minimum NDVI increase used in starting date calculations <>= required parameters [] = optional parameters.

Example: VAST3 ML 82 C:\TEMP C:\OUT Default Values: pbase = 107 ptol = 5 st_mon = 4 ed_mon = 11 ext = IMG

VAST

PBASE (default 107 on the 0-255 scale) corresponds to an NDVI value of 0.098.

It is meant to exclude spurious increases in NDVI when there is no effective vegetation on the ground. Santacroce uses 0.12.

PTOL is the tolerance used to decide if a rising trend can be declared the start of the season. If, from a given dekad, during the time interval t to t+2, at least two steps increase by at least PTOL, and there is no decreasing step, then t is declared the beginning of the season and decome SDAT, the stating date.

VAST

OUTPUTS

SDAT = the starting dekad

PEAK = the dekad at which NDVI peaks

HORZ = PEAK - SDAT

SVAL = the value of NDVI at SDAT

PVAL = the value of NDVI at time PEAK

VERT = PVAL - SVAL

EVAL = the NDVI at time PEAK + 4

DROP = PVAL - EVAL

SLOP = the slope of the line joining (SDAT, SVAL) to (PEAK, PVAL)

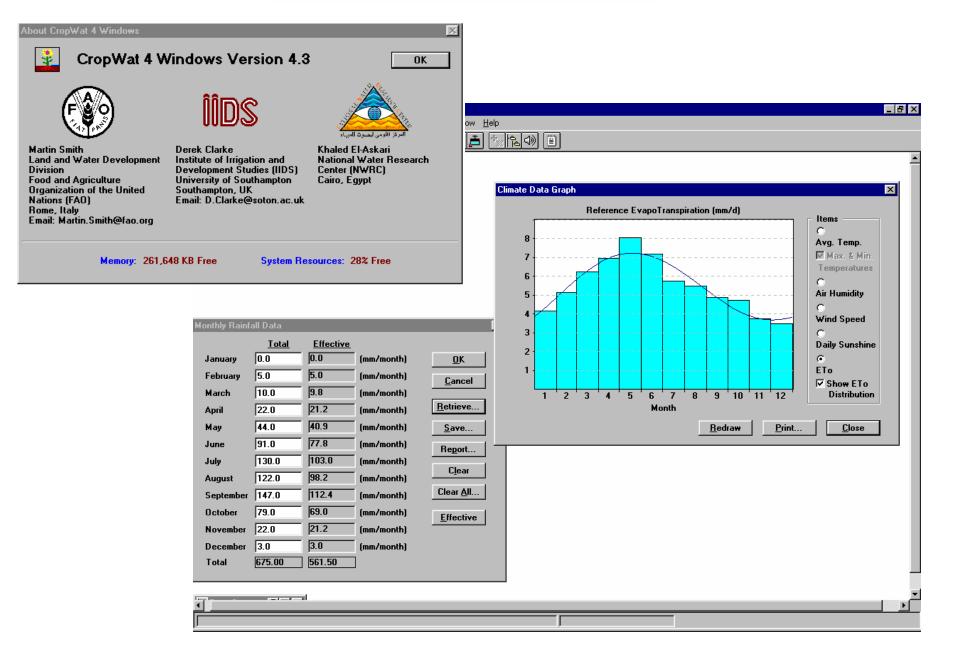
CUMM = the sum of NDVI values from SDAT to PEAK

SKEW = the ratio between the sum of the three NDVI values after PEAK (peak+1 to peak+3) and the sum of the seven values from Peak-3 to peak+3....

SMIDA

- DOS program
- Series of digital images
- Temporal interpolation of missing values

CropWat


Cropwat is a decision support system developed by AGLW having as main functions:

• to calculate: reference evapotranspiration, crop water requirements, crop irrigation requirements;

• to develop: irrigation schedules under various management conditions, Scheme water supply;

• to evaluate: rainfed production and drought effects, efficiency of irrigation practices.

CropWat

CropWat

🛃 CropWat 4 Windows

<u>File</u> Input<u>D</u>ata <u>S</u>chedule <u>T</u>ables <u>G</u>raphs Save<u>R</u>eport <u>Options</u> <u>W</u>indow <u>H</u>elp

8 J 🏂 📥] *** * *** * * * * * * 🍯 🗾 🕵 ÷

ata Item			File Name									
limate			V\CLIMATE\KURN				Total And	d Effective	Rainfall (mm/	'd)		
То			V\CLIMATE\KURN								Clo	ose
ainfall			V\CLIMATE\KURN	IOOL.CRM	4.5	50 +			/			
op · p ·		[No Data]			4.0						<u>R</u> ec	lraw 🛛
ropping Patte oil		[No Data] CACRORWATA	V\SOILS\MEDIUM	COI	4.0					4		
on cheduling Crit		[Not Set]	YISULSIMEDIUM	.301	3.5	50 🕂		·		A	<u>P</u> rir	nt
an Calculate		[10: 30]			3.0	0						
						,0				11	Show	Bain
The follow	ing dat	a ie roquirod	for calculating	the Cror	We 2.5	50						ribution
equiremen		u is requireu	ior calculating	me crut	2.0	n.		N				
de la c	NO ET				2.0					W	- Legend	d ——— b
fonthly Rainfa	all Data				Climate Data	Table						
	Tota	Effective	;		Country II	ndia	Statio	n KURN	001	 Altitude	281 (m)	
January	0.0	0.0	 (mm/month)	<u>0</u>	country p		Statio	и кони	UUL	Annuae	201 (iii)	
-			_```			Max Temp.	Min Temp.	Humidity	WindSpeed	SunShine	Solar Radiation	ETo
February	5.0	5.0	(mm/month)	<u>C</u> an	Month	(C)	(C)	(%)	(km/d)	(hours)	(MJ/m2/d)	(mm/d
March	10.0	9.8	(mm/month)		January	31.3	17.0	55.0	104.0	9.7	20.0	4.2
April	22.0	21.2	 (mm/month)	<u>R</u> etrie	February March	34.3	19.3	44.0	112.0 121.0	10.3 10.7	22.6 25.0	5.2
Obin			_ ` `			37.5 39.3	22.5 26.0	37.0 39.0	121.0	10.7	25.0	6.2 6.9
	44.0	40.9	(mm/month)	<u>S</u> av	April May	40.0	20.0	42.0	225.0	9.2	23.6	8.1
May	91.0	77.8		Bond	June	35.6	27.2	42.0 58.0	354.0	6.5	19.3	7.2
May June		103.0	 (mm/month)	перс	July	32.5	23.8	67.0	363.0	4.9	16.9	5.8
June	130.0	1.00.0	=`´´	C <u>l</u> e	August	32.1	23.5	67.0	302.0	5.4	17.7	5.5
June July	130.0			_	L	31.9	23.3	69.0	207.0	6.0	18.2	4.9
June	130.0 122.0	98.2	(mm/month)		September	J JI.J					21.9	4.7
June July		98.2 112.4	(mm/month) (mm/month)	Clear	September October	32.4	22.4	66.0	95.0	9.5	21.9	
June July August September	122.0 147.0	112.4	(mm/month)	Clear	October November		22.4 19.2	66.0 63.0	95.0 78.0	9.5 8.4	18.6	3.8
June July August September October	122.0 147.0 79.0	112.4 69.0	(mm/month) (mm/month)	Clear	October November	32.4						
June July August September	122.0 147.0	112.4	(mm/month)	Clear	October	32.4 31.0	19.2	63.0	78.0	8.4	18.6	3.8

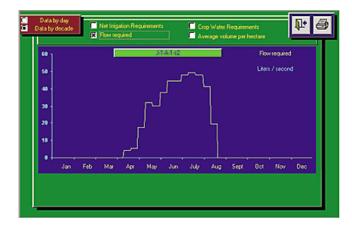
Unin Wai uatabast

_ 8 ×

Scheme Irrigation Management Information System (Simis)

SIMIS is a decision-support software that has been developed for the purpose of facilitating the management tasks of irrigation schemes.

This program is not limited to the water aspects but covers all the major issues of the day-to-day management activities and also includes control of maintenance, accounting, water fees and other relevant tasks.


Scheme Irrigation Management Information System (Simis)

Running Pr TID J-	Simis
Meteorological data	Climatic Stations
Cropping data	Soils Crops
Irrigation layout data	Irrigation network Sectorization
Plot.data	Land tenure Land use
Maintenance	Data for maintenance

Project data module

Water management and financial management modules

Outputs

FAO WEB sites

Environmental information

http://www.fao.org/sd/Endef_en.htm

Links of agro-meteorology http://www.fao.org/sd/ENlin_en.htm

Digital datasets and agro-meteorological data http://metart.fao.org/default.htm

WinDisp

http://www.fao.org/WAICENT/faoinfo/economic/giews/ english/windisp/windisp.htm

FAO-WMO Agro-meteorology Internet Conference Agromet-L@mailserv.fao.org