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C.  CALIBRATION OF YIELD AGAINST FORECASTING VARIABLES


Objectives of Section:



(  To supplement examples of calibrating crop yield forecasting modeling techniques illustrated in Volume B.



(  Discuss the principles and techniques involved with working with multiple and non-linear models in the approach to crop yield modeling.



(  Review the importance of technology as a variable affecting crop production in SADC and ways to treat them in a model.



(  Provide step-by-step procedures to address on some of these techniques.


1.0  Background


In Volume B, "Crop Yield Forecasting Models" of this manual, major emphasis was placed on designing and implementing a crop yield modeling system in the National Early Warning System.  The principles and steps associated with calibrating a model were emphasized.  Calibration of a model involves finding the best fit model in which the coefficients provide quantitative estimates which are agronomically consistent.  In Volume B, emphasis was also placed on the FAO Water Requirements Satisfaction Index (WRSI) as a simple variable in a simple model.  For some more humid areas of SADC, the WRSI is not the primary factor affecting crop yield.  Furthermore, major technological advances are being made in some of the countries.  Consequently, other variables and techniques need to be considered in calibrating a crop yield forecasting model.


In the sections below are summarized other calibrating approaches when dealing with regression analysis involving more than one variable, or when  the relationship is non-linear, or when the independent variables are highly correlated with each another.  Concepts are also included on relative yield and reference crop as it is related to evapotranspiration.  Techniques are also presented to deal with trends in the data set.  Some of the approaches are only conceptually discussed.  They are of interest, but are not considered practical in SADC due to data constraints.

1.1  Concepts


As is well known, there are many factors affecting crop production.  These include not only weather factors, but others such as improved farm management practices, introduction of high-yielding varieties, use of fertilizer, irrigation etc.  There are negative impacts as well including pests and diseases, flood, hail and other episodes which may or may not be weather-related.  A suggested method to deal with the effects of episodic events (adverse factors) has been addressed in Volume M of this manual.


To deal with these many factors, one must initially find the relationship of each of these variables with yield.  It is also important to find the relationship of each variable with each other as they may be highly correlated.  It is desirable to include all of these variables in a crop forecasting model.  However, because of data constraints and problems related with techniques and interpretation of the results, the goal in crop yield forecasting modelling is to produce a simple and practical one that is agronomically feasible.

1.1.1  Relative Evapotranspiration and Relative Yield


When water supply does not meet the requirements of plants, there is moisture stress.  It is well known that the response from stress varies with different crops and phenological stages of the crop.  It is also known that when crops are water stressed, the rate of actual evapotranspiration (ETa) changes.  Under optimum management and when water supply is non-limiting for unresticted growth and development, the crops are healthy and the rate of evapotranspiration is maximum.  This rate is referred to as maximum evapotranspiration (ETm).  When the crop water requirements are fully met, ETa=ETm. 


According to Doorenbos and Kassam (1986), the maximum yield Ym is the harvested yield of a high producing variety, well-adapted variety to a given environment, including the time available to reach maturity, under conditions where water, nutrients and pests and diseases do not limit the yield.  Given these conditions and the definitions above, the maximum yield is achieved when ETa=ETm.  In practice, when ETa is not limiting and other factors do not limit yield, the actual yield (Ya) can be represented by:
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where Ym represents the maximum yield.  


To consider the effects of water stress with different phenological stages, an empirically-derived yield response factor (ky) based on experimental field data, has been proposed by Doorenbos and Kassam (1986).  For most crops the flowering period has the highest factor. Table 1 shows these factors for selected crops.  These response factors have been derived based on the assumption the the relationship between relative yield (Ya/Ym) and relative evapotranpiration (ETa/ETm) is linear and is valid when water deficts is about 0.50 (1-ETa/ETm).  The relative yield loss is defined as (1-Ya/Ym).  This loss can be calculated as follows:
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Table 1.  Yield response factor (ky) for selected crops at different phenological stages (after Doorenbos and Kassam (1986).
PRIVATE 
CROP
VEGETATIVE PERIOD
FLOWERING PERIOD
YIELD FORMATION
RIPENING PERIOD
GROWING SEASON

BEANS
0.20
1.10
0.75
0.20
1.15

GROUNDNUT
0.20
0.80
0.60
0.20
0.70

MAIZE
0.40
1.50
0.50
0.20
1.25

SORGHUM
0.20
0.55
0.45
0.20
0.90

SOYABEANS
0.20
0.80
1.00

0.85

WHEAT
0.2
0.60
0.50

1.12

1.1.2  Actual and Reference Yield


The maximum yield discussed in the previous section is a theoretical yield and is not often reached nor known.  In practice, the actual yield for the season is:
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or
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where Yr is the local reference yield.  The equation shows that when water consumption is not limited and other factors are not in play, the actual yield is approximated by the local reference yield, i.e. when ETa=ETm.  The reference yield can be represented by  taking the average yield of the three best years from the historical data.  Historical data may also be limited.  Consequently, the average of the three may not reflect the potential maximum yield which meets the definition above.  Therefore, it is prudent to seek the help of the agronomists to help confirm the estimated values.  An indication of the local reference yield could also be obtained from experimental data.  However, a word of caution.  Experimental yield data are often much higher than farm level yields.  Additionally, when district or regional level yields are used in calibrating the model, they will tend to have smaller variability than those at the experimental level.  


The representation of Ya/Ym on the left side of the equation is also a way to homogenize the dependent variable when the number of data years are limited.  In this way, several districts may be combined to increase the sample size.  The independent variables on the right side of a model could include variables such as ETa/ETm, excess water from the calculation of the FAO Water Requirements Satisfaction Index (WRSI) and other variables such as fertilizer, percent hybrids, etc.


The maximum evapotranspiration is now redefined in terms of a reference crop evapotranspiration, ETo.  It is now defined as the rate of evapotranspiration from a hypothetical crop of 12 cm height, with canopy resistance (s m-1) of 70 and a canopy reflection (albedo) of 0.23.  This definition would closely resemble evapotranspiration from an extensive surface of green grass cover of uniform height, actively growing, completely shading the ground and not short of water (Smith, 1991).  Calculation of the reference evapotranspiration is not within the scope of this manual.  The reader is referred to a discussion of the different methods and the method adopted by FAO (Smith, 1991).

1.1.3  Multiple Regression Model  


A multiple linear regression model has more than one independent variable, all to the first power.  These are regressed against the dependent variable, yield.  An example of this model is: Y = a + b1X1 +b2X2 + e, where:



Y = yield



a = constant



b1= regression coefficient for variable 1



X1= value of variable 1



b2= regression coefficient for variable 2



X2= value of variable 2



e = residual error

1.1.3.1  Some Problems with Multiple Variables


A major problem with the use of more than one variable in a multiple linear regression analysis is the assumption of independence of the variables with each other.  This means that if the coefficient of variation (R2) is 75 percent, and one variable explains 50 percent of the variation of yield, the other variable should explain 25 percent.  In practice, this does not happen and multicollinearity results.  This means that the variables are highly correlated with each other, making it difficult to isolate the individual effect on the dependent variable.  In agrometeorology, multicollinearity between variables is common.


The effect of multicollinearity in the model is the resulting coefficient of determination, R2, may be high, but the coefficients may have the improper sign, i.e. they are agronomically unreasonable.  In all likelihood, the coefficients may also be statistically insignificant.  One way to treat the problem of multicollinearity, apart from other statistical approaches, is to transform the data set by combining variables into one index (e.g. WRSI).


Another problem with using multivariables is the potential autocorrelation problem  This occurs when the variable in one time period is highly correlated with another in another time period.  This is often encountered with several variables are used in a time series, such as temperature and rainfall for consecutive months.  Although there are statistical techniques to reduce this problem, it is best advised to transform these variables into an index to limit the number of variables to as few as feasible.


As with the simple linear regression model, a major criterion for the multiple regression model is that the coefficients are agronomically reasonable.  This means that the coefficients of the variables should have the proper signs.  For example, agronomically, it is expected that the lower the FAO Water Balance Index, the lower the yield.  The greater the number of frost days towards the end of the season, the lower is the likely yield.  The more the number of days above 32 degree C during silking, the lower the yield.  A multiple regression which considers more than one of these variables must consider the likely agronomic response to provide a realistic impact assessment on crop yield.

1.1.3.2  Principal Component


One statistical method to reduce collinearity is to develop regression on principal components.  In this procedure, the objective is to reduce the set of variables into a number of principal components which are independent of each other.  In this procedure, the total variation is redistributed to a set of uncorrelated axes, which are the principal components.  A correlation analysis of the components and the variables.  This process allows a closer analysis of the variables that are candidates for inclusion in the regression model.  The software FAOMET, developed by Gommes and See (1994) permits a rapid analysis of the data set.


It is appropriate, however, to caution that there are three major problems associated with this technique.  The first is the problem of associating the new principal component variables, i.e. what do these components represent?  There is difficulty in interpreting the components as it affects crop yield.  Some idea, however, may be gained from the correlation analysis.  The second difficulty is a structural problem which occurs when the principal component includes a number of variables over an extended period such as the growing season.  In this example, the temporal variation will obscure the normal variation of the individual variables which may be taken from shorter periods.  The third problem is also structurally related.  It occurs when the principal component of the standardized data is non-linearly related with yield.  When the linear and quadratic terms of the principal components are calculated, the variance of the quadratic term is so large that it obscures the effect of the linear term.     

1.1.3.3  Degrees of Freedom


The term "degrees of freedom" was coined by Sir Ronald Fisher to consider the restrictions imposed by defining the terms in the model.  For example, for a multiple regression model with two variables and n observations, one degree of freedom is used to determine the sum of squares attributable to the mean (constant); another is used for each of the sum of squares attributable to regression (one for coefficients b1 of the first variable and, another for b2, coefficient of the second variable).  This leaves n-3 degrees of freedom for the residual error sum of square.  When the residual sum of squares is divided by n-3, this provides the residual mean square error.  This is an estimate of the variance, s2.


In statistics, the degrees of freedom for error in multiple regression analysis is noted by the formula df = n-k-1, where n is the number of multiple observations, and k is the number of independent variables.  For example, if there were 10 observations and two variables, the degrees of freedom to calculate the error (unexplained variation) term is seven (10-2-1).  Consequently, as more variables are added (increasing the explained variation) the degrees of freedom remaining for error calculation decreases.   Theoretically, one can explain 100 percent of the variation of the model by adding more variables.  However, in doing so, all the degrees of freedom are used and the degree of multicollinearity is likely to increase, rendering the model unreliable for forecasting purposes.


A general guidance in crop forecasting, particularly in the SADC countries where the historical data base is not very long, is to keep the number of variables low, preferably one and not more than two.  Each country has a different situation, and the best way to determine what is reasonable is to simply do the analyses and evaluate the outputs.

1.1.4  Nonlinear Regression Model


When independent variables are raised to more than the first power the model is called a curvilinear regression model.    These selected variables can take on several forms, but must be selected judiciously.  One should have a theory first based on, for example, a known biological response.  An example of this model is: Y = a + b*X + c*X2 + e.  This is a polynomial model where:



Y = yield



a = constant



b= regression coefficient for variable 1



X= value of variable 1



c= regression coefficient for variable 2.  It can be > or < 0.



X2= value of variable 2



e = residual error


Other nonlinear models can take the form of:


Power:
Y = a + b*Xn , n varies.




Exponential:
Y = ea+bX  ;  eY = aXb.

These can be transformed for ease of analysis and interpretation.  For example the above equations are transformed logarithmically as follows:




log Y = a+b*X ; Y = a+b*log X (base e or 10)

The selection of the type of nonlinear model is one that involves trial and error.

1.1.5  Dealing with Trends in Data Sets


Trends in the yield data sets need to be considered.  For example, if we know that fertilizer use and/or new hybrid seeds have been introduced in recent years, there is a need to consider the effects of these inputs in the model.  Similarly, if fertilizer application has increased, the effect of this factor must also be considered.  


To consider these variables requires data which depict the effects. If one were fortunate, data on the quantity of fertilizer are useful.  One may also be able to secure a time series of the percent or actual hybrid planted area.  Realistically, these types of data are extremely difficult to obtain.  Furthermore, if they are available, they are usually summarized for large areas, e.g. country level.  However, slowly many countries are attempting to secure these types of data as they are considered important in the maintenance of food security.


How are these effects incorporated into a crop yield forecasting model?  One option is to consider "year" as a surrogate for technology increase with time.  If the observations indicate this yield trend, one could assume that technology increases linearly or non-linearly with time.  This surrogate variable may be segmented (or piecewise) to provide more than one trend variable.  For example, if from 1972 through 1983, there was an apparent trend, a variable "trend 1" could be used.  If the trend (slope) changed again from 1984 through 1991, another variable, "trend 2" could be included for the data from 1984.


Another option to deal with yield trend is to use the departure from trend as the dependent variable and then regress this variable (departure from trend) against the moisture (or other) variable.  However, it is most important to associate the apparent trends with technological changes such as increased use of fertilizer, hybrids, etc.  It is not appropriate to initially proceed with the  statistical analysis to fit the data to a pre-conceived model before investigating the apparent reasons for the slope changes in the data. 

2.0  Data Requirements


The type and amount of data depend on the type of model one is developing.  More often, however, it is the amount and type of data that drives what model can be built.


In SADC, finding an ideal data set to build crop yield forecasting models is not easily done.  These data sets include not only variables such as yield, but also variables such as rainfall, fertilizer, percent of area planted with different varieties, etc.  It is also be desirable to secure data from experimental or standardized observation plots where detailed observations are recorded.  From these experimental plots, an idea of maximum or potential yields can be estimated.  An estimate of the local maximum reference yield is needed.  From a practical point of view, securing information on maximum yield is an attempt to secure a consensus from field experts.  These include agronomists and extension personnel with their local knowledge of the soil-crop-climate relationships.


In the absence of more objective data to depict technology changes (hybrids, fertilizer, farm management), a surrogate data set can be used.  For example, the numbers 1,2,3...or s sequence of year numbers would serve as a surrogate.

3.0  Procedure: Step-by-Step Description


The procedure to develop a crop yield forecasting model is the same as those outlined in Volume B.  Briefly, they are summarized below.


Step 1:  Secure Data Base (Meteorological and Agricultural)



As indicated above, the reality in SADC is that data availability often drives what kind of model should be built.  Consider the sample size of the dependent variable as well as the independent variables.  Consider the distribution of the crop growing areas relative to the distribution of the agrometeorological reporting network.


Step 2:  Quality Check Data Base



This is a fundamental step in building any crop yield model and is particularly so when more than one variable is considered.  This step may need to be repeated particularly when derived variables are used.  It is always a good idea to plot the data to review the variability of the data.  This process provides a rapid way to quickly determine the validity of the data.


Step 3:  Secure Spatially Averaged Value



The principles to secure spatially averaged meteorological value are discussed in Volume G.  It involves estimating the datum for grid points and averaging them for an area of interest.  For ease of analysis, the softwares SURFER and IDA (Pfirman, 1991), can be used.  IDA has been used primarily for remote sensing applications.


Step 4:  Plot Variables Against each Other

[image: image5.wmf]
1Figure 1.  Times series plot of sorghum yield and WRSI.  This task is one of the steps in building an agrometeorological crop yield model to quickly determine the relationship between variables.



Before any statistical runs are made with available software, it is recommended that the variables be plotted with each other (e.g. see Figure 1).  This process provides visual clues on each datum.  A correlation analysis would also provide  quantitative statistics, but studying the plots themselves can provide insights about individual years.


Step 5:  Run Selected Statistical Programme


There are many statistical software packages, some of which are more sophisticated than others.  The degree of sophistication depends on what the user needs.  Ascertain what the outputs are and what they mean.


Step 6:  Interpret Outputs and Select Candidate Model


Step 7:  Statistically Test Candidate Model



The model must initially be tested for its statistical significance using the t-test or the F-test criterion.  These standard tests in statistical analysis are discussed further in the examples below.  There are also other types of tests needed after a candidate model is developed.   For example, the model need be tested with independent data.  How "robust" the test is (i.e. whether a truly independent test can be accomplished) depends much on the size of the sample data set.  Independent data are data not used in developing the model.  If independent data are not available, a less "robust" test can be accomplished by eliminating one year from the data set and calculating the model on the remaining data.  This process is done repeatedly with a different year being eliminated and the candidate model developed on the balance of the data.  In this way, if there were, say 10 years of data, there would be 10 different model, each developed with 9 years of data. There would also be 10 estimated yield values.  These are compared with the observed yield and tested for its statistical significance.


One can also determine the number of times and the magnitude of the directional changes of the estimated and observed values agreed.  The desirable result is for both the observed and estimated yields to increase or decrease together.  The more times they agree, the better is the model.


Step 8.  Operationally Test Candidate Model



Once a candidate model is developed, an operational test is conducted.  This test involves running the entire system, from data collection to product output.  With this test, a real-time environment is created, thus revealing strengths and weaknesses, and therefore, providing areas for possible improvements.



The form of the yield forecast product is extremely important.  What form will it be presented to the decision-maker?  Is it in map form? Is it in tabular form?  Although many potential users do not understand and may not accept a measure of confidence in the forecast, it should be calculated as part of the product.


Step 9.  Document Model Results



Certain procedural steps are necessary to produce a candidate crop yield model for early warning.  The steps outlined above should help determine whether the models will have potential utility in the early warning system.  While these steps will not necessarily assure that a model is reliable, it will form a sound basis for which future improvements can be made as additional data are secured.

4.0  Sample Calculations

4.1  Multiple Regression Analysis


The following example is for a data set (Table 2) which includes fertilizer amount and the Water Requirements Satisfaction Index (WRSI) to develop a multiple regression crop yield forecasting model.  For the most part, the data are from Malawi.  However, the data are used for illustration only and should not be construed to mean that such a model exists.  Steps 1 through 3 outlined above are assumed to be completed.

Table 2. Yield, WRSI and Fertilizer use (1983/84 - 1991/92).

PRIVATE 
YEAR
YIELD(KG/HA)
WRSI (%)
FERTILIZER

MT(x1000)

83/84 
2483 
97 
57.5 

84/85 
2725 
98 
69 

85/86 
2534 
90 
65 

86/87 
2488 
95 
69 

87/88 
2479 
87 
85 

88/89 
2671 
94 
90 

89/90 
2506 
84 
107.5 

90/91 
2727 
90 
115 

91/92 
600 
55 
120 
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2Figure 2.  Time series plot of yield and WRSI in Malawi.

Step 4.  Plot variables against each other.


The first step is to plot the time series of yield and WRSI.  A study of Figure 2 reveals that in general yield and WRSI increase and decrease together.  However, a closer analysis show that when the WRSI decreases, the rate of yield decrease is not as high, i.e. the slope change is not as great.  The exception is 1991/92 when a prolong drought decreased crop yield drastically, making the influence of fertilizer nil.
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3Figure 4.  Time series plot of fertilizer and yield in Malawi.


The second plot is the time series of fertilizer and yield (Figure 3).  From the plot, it is evident that fertilizer sales has been increasing since 1984.  Maize yield, however does not appear to show any trend increase.


The third plot is the plot of fertilizer with the WRSI (Figure 4).  Two trends are evident, one for fertilizer and the other for WRSI.  However, the trend for WRSI is negative.  The data apparently suggest that the moisture situation has changed from a moist regime to a drier one during the span of the record.  The drought of 1991/92 is now history.  
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4Figure 4.  Plot of fertilizer sales and WRSI in Malawi.


From all of these plots and analyses, one is in a position to propose a potential maize yield forecast model that includes two independent variables, WRSI and fertilizer.  A third possible variable might include the interaction of the two.  However, in the interest of keeping the model simple, and due to the number of data years, it is recommended that only two variables be included in the multiple regression model.


Step 5.  Run Statistical Programme



The first operation in this step is to determine whether the two variables are necessary.  It may be that only a single variable may be needed.  Consequently, a linear regression model is run with the Water Requirements Satisfaction Index.  The result of the analysis is shown in Table 3.

Table 3. Linear Regression of Yield vs. WRSI.

PRIVATE 
LINEAR REGRESSION (YIELD VS WRSI)





Regression Output:



Constant


‑1841 

Std Err of Y Est


240.4 

R Squared


0.886 

No. of Observations


9 

Degrees of Freedom


7 






X Coeff


47.82 

Std Error of Coeff


6.473


The analysis indicates that WRSI explains 88.6 percent of the variation.  Although this is quite high for only one variable, it is of interest to determine the added effect of fertilizer.  Furthermore, from the previous graphical plots it was suggested that fertilizer kept the yield much higher under favourable moisture.  Consequently, a multiple regression analysis with two independent variables was run. The results are presented in Table 4.

Table 4.  Multiple Regression Model for Maize using WRSI

and Fertilizer as independent variables.

PRIVATE 
Constant


‑3756 

Std Err of Y Est


180.2 

R Squared


0.945 

No. of Observations


9 

Degrees of Freedom


6 



WRSI
FERTILIZER

X Coefficient(s)

59.98 
9.802 

Std Err of Coef.

6.816 
3.858 


Step 6:  Interpret Outputs and Select Candidate Model



The resultant model is: _ = -3756 + 59.98X1 + 9.80X2

where:
-3756 is the constant




59.98 is the coefficient for X1 (WRSI)




9.80  is the coefficient for X2 (FERTILIZER)



The model has a coefficient of determination (R2) of 0.945 (94.5%).  This is about 6 percent greater than with the use of only one variable, WRSI as indicated in Tables 3 and 4 above.



The standard error of the _ estimate (sy.x) is 180.2 Kg/ha.



There are nine observations (n=9) and six (n-k-1) degrees of freedom, where k is the number of independent variables, (2 in this case).


Step 7:  Statistically Test Candidate Model


The statistical tests for the model also requires the test of significance of the parameter estimates, i.e. the coefficients of the variables.  The test of significance for the individual parameter estimates (coefficients) requires the "t" test criterion with n-k-1 degrees of freedom where k is the number of independent variables and n, the sample size.  A test of the overall significance of the regression (consider all variables) can also be made.  The overall significance of the model requires the F-test with k and n-k-1 degrees of freedom.  


To test the statistical significance of the coefficients requires the calculation of the variance of the estimates.  If we let b1 and b2 represent the coefficients of variables X1 and X2, the variance (represent by s2) of b1 and b2 are given by:


sb12 = [(Σe2)/(n-k-1)]*[Σx22/{Σx12Σx22 - (Σx1x2)2}]  Note: x = (X-mean).


where:    e is the error (residual) or the difference between the observed and estimated 

yield, _.



n is the sample size = 9



k is the number of independent variables =2



x1 is the corrected (for the mean) sums of squares for variable WRSI



x2 is the corrected (for the mean) sums of squares for variable FERTILIZER.


Similarly, the variance of b2 is estimated from the following:


sb22 = [(Σe2)/(n-k-1)]*[Σx12/{Σx12Σx22 - (Σx1x2)2}]


The statistics needed to calculate the above are secured from Table 5, which tabulates the corrected sums of squares and sums of cross-products.  The above relationships are used to calculate the variance, and subsequently the standard deviation of the estimated parameters (coefficients).  The t-test criterion is used.  From tables from a statistical text, t values can be found to compare with the analysis.  Consequently,


sb12 = {(194900/6)}*[(4306)/{(1380)(4306)-(-1712)2}]=46.447


sb1  = 6.81


and


sb22 = {(194900/6)}*[(1380)/{(1380)(4306)-(-1712)2}]=1.4097


sb2  = 1.19


Calculating the t value, 


t= b1/sb1 = 59.98/6.81 = 8.81 and t= b2/sb2 = 9.80/1.19 = 8.23.

Both of these value exceed the 0.001 probability level with 6 degrees of freedom.  Consequently, we can conclude that both variables are highly significant and can be retained in the model.

Table 5.  Calculated corrected sums of squares and cross-products for the multiple regression example.

PRIVATE 
YEAR
Y
X1
X2
y
x1
x2
x1*y
x2*y
x1*x2
x1*x1
x2*x2

83/84
2483 
97 
57.5 
126 
9.22 
‑29 
1162 
‑3647 
‑267 
85.05 
838 

84/85
2725 
98 
69 
368 
10.2 
‑17 
3762 
‑6420 
‑178 
104.5 
304 

85/86
2534 
90 
65 
177 
2.22 
‑21 
393.3 
‑3796 
‑47.7 
4.938 
460 

86/87
2488 
95 
69 
131 
7.22 
‑17 
946.1 
‑2285 
‑126 
52.16 
304 

87/88
2479 
87 
85 
122 
‑0.8 
‑1.4 
‑94.9 
‑176.2 
1.123 
0.605 
2.09 

88/89
2671 
94 
90 
314 
6.22 
3.56 
1954 
1116.4 
22.12 
38.72 
12.6 

89/90
2506 
84 
108 
149 
‑3.8 
21.1 
‑563 
3137.3 
‑79.5 
14.27 
443 

90/91
2727 
90 
115 
370 
2.22 
28.6 
822.2 
10566 
63.46 
4.938 
815 

91/92
600 
55 
120 
‑1757 
‑33 
33.6 
57591 
‑58957 
‑1100 
1074 
1126 














SUM
21213 
790 
778 
0 
0 
0 
65972 
‑60462 
‑1712 
1380 
4306 

AVG
2357 
88 
86.4 










Table 6 tabulates the calculations to determine the error term, the difference between the observed and estimated yield values.  This table is also be used to calculate the coefficient of determination (R2), which represents the percent of the variation explained by the two variables in the model.  Remember that "little x" is the difference between the observed value and the mean, i.e. "large X" minus the average.

Table 6.  Statistics for the calculation of the Test of Significance of Parameters.
PRIVATE 
YEAR
Y
X1
X2
_
e
e2
y
y2

83/84
2483 
97 
57.5 
2626 
‑143 
20323.4 
126 
15876 

84/85
2725 
98 
69 
2798 
‑73 
5364.1 
368 
135424 

85/86
2534 
90 
65 
2279 
255 
64923 
177 
31329 

86/87
2488 
95 
69 
2618 
‑130 
16978.1 
131 
17161 

87/88
2479 
87 
85 
2295 
184 
33760.4 
122 
14884 

88/89
2671 
94 
90 
2764 
‑93 
8671.33 
314 
98596 

89/90
2506 
84 
108 
2336 
170 
28961.2
149 
22201 

90/91
2727 
90 
115 
2769 
‑42 
1780.84 
370 
136900 

91/92
600 
55 
120 
718.9 
‑119 
14137.2 
‑1757 
3087049 







    








SUM=
194900 
0 
3559420 







R‑SQUARE=

0.945244 


To test the overall significance of the regression, the F-test is appropriate.  The calculations from Tables 5 and 6 are used.  The ratio of the explained variance due to regression and the unexplained variance (error) follows the F-distribution with k and n-k-1 degrees of freedom. k is the number of independent variables; n is the sample size.   In the above example, F can be determined as follows:

5

F=
(0.945/2)/{(1-0.945)/(6)}


 =
 0.4725/0.0092


 =
 51.35

[image: image9.wmf]
5Figure 5.  Time series of sorghum yield at Francistown, Botswana (1982-1991)


From the tabular values, F=14.54 at the .005 level of significance.  The calculated F value of 51.35 far exceeds this probability value.  From this one concludes that both b1 and b2 are not zero and should be retained in the model.

4.2  Trends in Data Sets


Step 1.  Plot the time series of the yield data.
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6Figure 6.  Observed and Trend Sorghum yield at Francistown, Botswana (1982-1991)


Figure 5 shows the time series of sorghum yield from 1982 through 1991 at Francistown, Botswana.  There are indications of a positive trend in the data set.  The question is: is this  phenomenon associated with technology or another factor?


Step 2.  Determine whether the apparent trend is weather-related.


This is accomplished with preliminary plotting.  In this case, if rainfall or a moisture index were available, it should be plotted with yield so as visualize their relationship.  This is done in Figure 6.  From the figure, there is indication of a positive trend.

Step 3.  Plot the relationship

between yield and WRSI.
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7Figure 7.  Relationship between sorghum yield and WRSI in Francistown Region.


This is accomplished in Figure 7, which suggests that WRSI may be a major factor.  The question remains, however, whether advancing technology is contributing to some of the increase.  Consequently, the procedures outlined with the example of the multiple regression analysis should be implemented.  Briefly, there is a need to determine the regression with WRSI alone followed by  a regression on adding a trend surrogate variable for technology.  The surrogate variable selected is 1,2,...10 for the years 1982, 1983,...1991.  The resulting regression analyses are as follows:


Regression of yield and WRSI:



_ = -172.87 +5.251*WRSI



R2= 0.802 



sy.x=28.5 kg/ha


Regression of yield with WRSI and TREND: 



_ = -160.73 +4.690*WRSI +2.773*TREND



R2= 0.812



sy.x=29.7 kg/ha


The multiple regression model increases the coefficient of determination by only 1 percent.  The statistical significance will need to be determined by the test of significance as illustrated above.  The trend variable increases by approximately 2.8 kg/ha per year, while the most important variable in this example is clearly the WRSI.


Although we have discussed positive trends, there is also the possibility that trend could decrease.  If this is found in the data, they need to be scrutinized carefully.  The general guidance on any trend changes is to rationalize the trend changes.  The data should never be blindly analyzed without objectively viewing and determining the causes of the changes.


Another technique to use trended data is to detrend them initially and then find the association with the independent variable.  Before this is done, however, several steps are needed.  These are listed for guidance.


Step 1.  Plot the time series of data.


Step 2.  Rationalize the trend noted in the data.


Step 3.  Find the model that trends the data.  The model could be a linear or non-linear trend model.


Step 4.  Subtract the observed yield from the detrended yield.  There will be positive and negative values.


Step 5.  Find the model that best fits the detrended yield.  The statistical tests described above should also be performed.


Step 6.  Run the model operationally.

4.3  Non-Linear Regression Analysis


Step 1.  Always, plot the data.
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8Figure 8.  Relationship of the WRSI with national maize yield (left scale) and the logarithm of maize yield (right scale) 



Figure 8 shows the national maize yield and WRSI for Zimbabwe from 1983/84 to 1989/90.


Step 2.  Hypothesize a proposed non-linear form of the model from the plot.



The proposed model is of the form: Y = ea+bX where Y is yield and X is the Water Requirements Satisfaction Index.


Step 3.  Perform a least squares analysis on the data set.



There are many statistical packages available to do a rapid least squares analysis.  One that plots the confidence band around the regression line is desirable.


The calculated model is:


_ = e2.254 +0.03186*WRSI 

R2= 0.977


sy.x=0.0552

Step 4.  Analyze the plotted data set.


Are there any outlyers?  If so, they need to be reconciled. Do the observed data fall within the 95% confidence interval?

Step 5.  Perform a statistical analysis of the model.

[image: image13.wmf]
9Figure 9.  Plot of the national maize yield and WRSI for Zimbabwe.


The procedures and illustrations are as presented above.


It is sometimes useful if the data could be transformed so as to simplify the analysis and interpretation.  In the data set of the national maize yield for Zimbabwe, for example, the data sets can be transformed into the following:


log Y = a + bX

This logarithmic transformation (see Figure 9) adjusts the scale of the Y-axis but retains the linear X-axis.  The regression analysis of the transformed data gives the following regression model:


log _ = 2.021 + 0.0135*WRSI



sy.x = 0.024



R2 = 0.977


Remember that the estimate _, is in logarithmic form.  It must be reconverted by taking the antilog of the estimate.

4.4  Potential Effects of Influential Observations

[image: image14.wmf]
10Figure 10.  Plot of yield versus WRSI in Malawi.


Sometimes one or two datum points may influence the proposed form of the crop yield forecasting model.  These are referred to as "influential observations.  For example, in the data set for Malawi, the yield (600 kgm/ha) for 1991/92, a drought year seemed isolated from the remainder of the set (Figure 10).  When yield is plotted against the WRSI, a linear trend is evident.  If 1991/92 was not in the data set, the relationship between WRSI and yield would have been very obscure. It may be that with additional years of data, a non-linear model would fit the relationship as in the case of the national model for Zimbabwe.
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11Figure 11.  Plot of yield and March Rainfall at Somewhere Country.


Another more subtle example of influential observations is shown in Figure 11.  It depicts the relationship between rainfall and yield.  In this case there are several more data years.  If the data were to be processed through the computer without a visual inspection of the data, a negative relationship between rainfall and yield will result. This is because of the two datum points with rainfall about 80-85 mm of rainfall.  They are exerting a strong influence on the shape of the curve.  In this particular example, a non-linear model of the type, Y=a+bX1-cX22 would probably be more appropriate.  This proposed model also makes more sense agronomic sense where the interpretation is that yield increases as moisture increases up to an optimum level, whereafter, excess moisture can decrease yield.

5.0  Limitations

5.1  Model is applied only to the area and duration for which it was developed.


The regression model is an empirical model.  A basic premise of regression model is that it performs best in an area where the data originated and for similar environmental conditions of the historical period.  Extending the model beyond the data for which is was developed may lead to unusual results.

5.2  Must independency of variables be adhered to?


In practice, there are few "independent" variables.  Consequently, the objective should be one of using variables that are least correlated with the others.  The modeler should also have a conceptual knowledge of the input variables.  In the end, it becomes a matter of trial and error and testing the model under operational conditions.

5.3  Model needs to be updated.


Because of the empiricism involved with the regression model, it needs to be updated as new data become available.  The model is a reflection of its past; consequently, if new data contain extremes not in the set used to develop the model, it will likely do poorly when extreme conditions are encountered again.  Also, with the introduction of new technology, an increasing yield trend may be evident.  If so, this trend needs to be considered in the updated model.

6.0  Potential Operational Issues

6.1  How can one use trend for the current forecast year?


When a model has trend as a variable, a major problem with forecasting is the question of what to do for the forecast year.  One could extend the trend value, but this may not always be the proper course of action.  There should always be a rational reason for extending the trend value.  When this is not done, a cardinal rule is broken in that the model should not be used outside the data limits for which the model was developed.

6.2  What is the best period to operate the model?


In SADC Early Warning System for Food Security, a forecast is desirable early in the season.  However, for modeling integrity, the best time is near the reproductive stage of the crop.  Consequently, February/March is the suggested time to issue a forecast from the model.  Waiting until February/March has the advantage in that this period corresponds to the critical reproductive stage and that moisture effect is the largest factor at that stage.

6.3  If less than 10 years of data exist, should a multiple regression model be developed?


The "name of the game" of operational agrometeorological assessment is extracting the best information possible.  Ten years is barely adequate.  Analyses of the data, including the statistical tests described in this volume should provide an indication of whether the sample size is sufficient.  Consideration should be given to combining areas by homogenizing the data base.  However, there are disadvantages to considering such a step.  The output, as in any regression model output, should be reviewed with other sources of data and information.

6.4  What should be the size of the region for which to develop a model?


Agrometeorologists are often asked to forecast for the smallest administrative area, e.g. district level.  This is possible if data exists.  Each district will likely have a unique model of its own.  One should also remember that the variability of the yield data base is likely to be larger than the yield data base for a larger area, e.g. district vs. region.  When district area and yield data are combined to provide regional statistics, the standard error decreases.

7.0  Exercise

7.1  In Table 7 are data for sorghum yield and WRSI for the period 1982-1991 at Gaborone, Botswana.  Analyze the data for trend.  Is the trend a reflection of weather or of improving technology?  Use the year number, e.g. 1982=2; 1983=3, 1984=4,... 1991=11 as the trend surrogate value for a linear increase in technology.

Table 7.  Sorghum yield and WRSI for Gaborone, Botswana (1982-1991)

PRIVATE 
YEAR
YIELD (KGM/HA)
WRSI

1982
62
42

1983
17
34

1984
56
37

1985
68
45

1986
74
41

1987
50
48

1988
269
65

1989
194
59

1990
103
47

1991
129
64

8.0  Answers to Exercise

8.1  The data are plotted in Figure 12.  Inspection of the graph indicates that except for two years (1986 and 1987)  WRSI and yield moved in the same direction.  This suggest that the two are highly correlated with each other.  The multiple regression analysis with WRSI and the surrogate values for technology produced the following model:


_ = -210.214 +7.203*WRSI -5.349*TREND   


R2=0.765


sy.x=42.0

The multiple regression model compares with the linear regression model which produced the following equation and statistics:


_ = -189.236 + 6.046*WRSI


R2= 0.748


sy.x=40.7


The linear regression model is recommended even though the coefficient of determination of the multiple regions model is 2 percent higher.  The sign of the trend variable is negative; this does not make sense.  Furthermore, the standard error of the estimate is lower with the simple linear regression model.
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�seq Figure  \* Arabic�12�Figure 12.  Time series of sorghum yield and WRSI at Gaborone, Botswana.
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