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B.  CROP-YIELD FORECASTING MODELS 

Objectives of Section:


(
Provide a brief overview of the potential types of crop yield models for agrometeorological forecasting.


(
Discuss three levels of empirically-based models applied in early warning for food security in SADC, including their data requirements, limitations and issues for operational use.


(
Provide step-by-step procedures to apply the empirical linear regression crop yield forecasting model.


(
Enhance user understanding of the procedure with exercises.

1.0  Background


It is highly desirable in early warning for food security to secure an objective method for estimating crop production as early as is feasible.  There are several potential methods used in early warning including sample surveys.  The agrometeorological forecasting models are complimentary to other approaches used for crop forecasting.  In this volume, the emphasis is on simple empirically-based crop yield models.  How does one go about building such a model?  These and other criteria are discussed and illustrated.

1.1  Concepts


A crop yield model is defined as a system represented by a mathematical or statistical expression of the crop response to its environment.  The mathematical expression helps define the factors which affect the response.  If the factors were perfectly defined, one could forecast the outcome accurately.  In a physical system, this is easily done.  In such a system, e.g. component pieces of a puzzle on wood, the outcome is always the same when the pieces (factors) are put together.   Each piece has been cut to a specific size and shape.  When put together, they fit perfectly.


In a biological system, however, this is rarely possible.  Our limited knowledge of the interactions of the environment with the cropping system and inadequate measurements make it extremely difficult to forecast the outcome accurately.  A further problem is the time-space variability inherent in a biological system.  Another problem is, how does one collect and analyze the data needed to represent the crop response system in a dynamic way for early warning?  Given the above, is it no wonder that crop modelers try to short-circuit the system with simple models?      

1.2  Classes of Models


There are generally two classes of crop yield models: empirical and process-oriented (also referred to as deterministic, physiological, dynamic, simulation) models.  The process-oriented class uses mathematical/statistical sub-models, which are experimentally derived, to describe the various environmental and physiological processes that occur.  Partitioning of photosynthate to various parts of the plant (leaf, stem, root, grain), are also incorporated into the model.  The empirical model, on the other hand, short-circuits these natural processes and relate yield directly to the environmental factors.  The intermediate steps are omitted; hence, they are often referred to as "black-box" models.  These two classes, however, are not mutually exclusive as certain features of one may be found in the other.


Both of these models have their advantages and disadvantages.  A major disadvantage of the process-oriented model is the lack of necessary data to operate it.  Short time scale data (e.g. interval of a day) are necessary.  Also, specific types of data such as radiation or indications of genetic type may not be accessible for operational use.  The empirical model, on the other hand, sacrifices depiction of the processes involved in crop growth and development.  This often means that extreme responses, such as very low or very high yields, are often underestimated.  Yet the empirical model is simple to operate.


How does one proceed with building a model for early warning?  These are discussed below.

1.3  Model Selection Criteria


The following criteria should be considered in selecting a model for operational use: purpose of model, data availability, reliability, timeliness of output product, consistency with scientific knowledge and cost.

1.3.1  Purpose of Model


The most important criteria is to determine the purpose of the model.  What is the model to be used for?  In SADC, the agrometeorological model is used to forecast crop yield and production in early warning for food security.  There is a need for early and accurate information on crop production potential in as small an administrative level as possible, e.g. district level.  This level is considered a large area and is distinguished from a small area such as a farm or a village.

1.3.2  Data Availability (and Quality)


Data include both operational as well as historical, which are used to develop the model.  If data are not available for operational application, the best model is of little value.  In SADC, it is no secret that historical crop yield data are viewed with suspect and therefore, should only be used with caution.  A quick check of them can be made.  For example, in Figure 1, a quick plot of the data for maize yield at an unnamed country indicates questionable quality.  
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1Figure 1.  Plotting of yield data in quality control can reveal suspect values.


A data series with little variability should also be suspect.  Until they are checked, however, they should not be discarded.  A point to remember is that the variability of yield data increases from the aggregated country level to the disaggregated farm or district level (see Figure 2).  All historical data must be quality-controlled, particularly for years which show unusually high or low values.  A reasonable explanation should be found for them; otherwise, they are suspect and should not be used.  The National Agrometeorologist is in the best position to investigate this task and make a reasonable judgement on their use.
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2Figure 2.  The relationship between agricultural area size and relative variance of crop yield statistics. The relative size is from the farm level to the national level.


Operational data must be continually checked. Recording and applying meteorological data involve the observer, mode of communication, recopying, computer data entry and plotting, and finally interpretation.  Each of these steps can lead to potential errors.  If possible, other complementary data sources should be used with the meteorological data.  For example, satellite remote sensing data, when available, can also be used to obtain a check on the spatial distribution of rainfall.

1.3.3  Reliability


A reliable model is characterized by having high precision and high accuracy.  Precision refers to repeatability of an estimate; accuracy refers to the ability of the model to forecast the true (or population) value.   A  model can have high precision, but low accuracy.  When this is the case, there is bias, which is the tendency to favor a position.  These terms can be better shown in Figure 3.  
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3Figure 3.  Illustration of precision, accuracy and bias.


In Figure 3 four separate "targets" are shown, each with concentric circles.  The center position in each target is the "bull's-eye" (a term used by marksmen to denote the center of the target), the area within which is the true aimed position of a marksman.  In statistic, this is the true population mean.  The marksman is "accurate" when he shoots and hits this center position. Hitting the center position all the time is rare.  The shots may pattern itself into one of the four examples shown.  High precision occurs when one is able to repeat the shot near the same spot (top left figure).  Bias may be caused by instrument (weapon) error such as the sight or telescope or other factors such as wind.  Large bias can lead to low accuracy (top left and lower left figure).  One could also have low bias, but also low precision and low accuracy (top right figure).  The goal is to achieve high precision and high accuracy with minimum bias (lower right figure).  This goal is only possible if one considers all factors that affect the model.


A measure of reliability can be determined from two statistics.  These are the coefficient of determination (R2) and the standard error of the yield estimate (sy.x).  Both of these statistics are further elaborated in the sample calculation of Section 4.2.

1.3.4  Timeliness of Output Product


For early warning, the output product must be delivered to the user in a timely manner.  Timeliness is the availability of the information with sufficient lead time so that early options can be considered in management decisions.  For crop yield forecasting, this means before harvest; obviously, the earlier the better.  However, the earlier the forecast, the larger is the potential forecast error.  For maize and sorghum agrometeorological forecasting, the earliest recommended period is during the critical reproductive period.  For most countries in SADC, this is February/March of the crop season planted in November/December of the previous calendar year.

1.3.5  Consistency with Scientific Knowledge


For empirical models, it is crucial for a selected variable to be consistent with scientific knowledge.  For example, if the model relates moisture and yield in SADC, one should reasonably expect a positive relationship, i.e., higher moisture to be associated with higher yield.  If the model outcome indicates a negative relationship, i.e. higher moisture with lower yield, this calls for a re-evaluation of the model development process.  Statistical black-box analysis, often associated with the use of the computer, can lead to this type of result.  It is a matter of plotting the data to determine what is producing the erroneous result.  In this case, the result is not consistent with scientific knowledge.  The use of such a model will only strengthen the critics of the black-box approach.

1.3.6  Cost       


The cost of developing and operating a selected model is a time-space data problem as well as a personnel resources problem.  As the model becomes more detailed, the cost rises.  Computer costs are not major, except for initial data entry.  The added cost arises from quality control of the data.  It increases exponentially as the frequency of data retrieval increases, e.g. from monthly, dekadal, daily to hourly values.

1.4  Levels of Operational Models in SADC


With the criteria for model selection as a guide, it is only prudent that operational models in SADC is empirically-based.  In SADC, these are referred to as Level I, Level II and Level III models.  Each SADC member country may consider one of these three levels as primary in their early warning activities, depending on the amount of historical and real-time data available.  The Water Requirements Satisfaction Index (WRSI), described in Section A, is often used as the dependent variable to forecast yield.


Although the WRSI has been used in SADC, it is important to recognize that other parameters may be used just as effectively.  The WRSI is just an example.  Other parameters in the calculation of the WRSI e.g. evapotranspiration, rain minus plant water requirement, soil moisture reserve, etc. may be used.  Unlike the WRSI, these parameters are not normalized; hence they sometimes work better than WRSI.  The preceding remarks should be kept in mind throughout the remainding sections of this volume.    

1.4.1  Level I Model


In level I, a relative yield estimate (in percent) is made using the current WRSI with the yield and WRSI of the previous year.  It is used in data-limited areas. In this level of model, the absolute yield in the previous year is always assumed to be 100 percent.  For example, if the WRSI in the previous year was 75 and this was associated with a reported maize yield of 1.0 tonne/hectare, (assumed correct by government authorities) the relative forecast yield for the current year with an WRSI of 60 is 80 percent [(100x60)/75].  This corresponds to an absolute yield of 0.8 tonne/hectare forecast for the current year.


Several assumptions are made with the Level I model, particularly with regard to the reliability and representativeness of the agricultural and meteorological data.  The relationship between relative yield and WRSI is assumed to be linear.  Consequently, large errors are possible.  Another possible error is the planted hectarage, which is estimated by government.  Crop production is equal to area times yield.  Yield is determined by dividing production (tonnes) by the estimated hectarage.  In spite of these potential errors, Level I model may be the only source of agrometeorological yield forecast information in such countries as Mozambique and Angola.

1.4.2  Level II Model


The Level II model is based on FAO Paper 73 (Frere and Popov, 1986).  In this approach, the Water Requirements Satisfaction Index (WRSI) is related to a matrix of classes of the percent of the average of the three best years (or maximum) yield) in a data series (see Table 1).  For example, if the WRSI is 85, this is associated with a yield of 50-89 percent of the average of the three highest yield in the data series.  It is suggested that at least 10 years of records be available to estimate this value.  If only a few (<10) years are available, the maximum yield must be estimated from information sources in the agricultural extension service.  Table 1 also shows the corresponding qualitative classes, ranging from "very good" to "complete failure".  Although "complete failure" is shown with WRSI less than 50, there are some areas, e.g. Botswana, where some harvest, although poor, is possible.  In this regard, it should be recognized that the qualitative description associated with each class of WRSI is extremely crop and site specific.  This again reiterates the need to exercise caution when using the WRSI index in an empirical model. 

Table 1.  Relationship between Water Requirements Satisfaction Index (WRSI) and the percent average of the three best yield (adapted after Frere and Popov, 1986).

PRIVATE 
% AVERAGE OF THREE BEST YIELD
WRSI
DESCRIPTION

>100
100
VERY GOOD

90‑100
95‑99
GOOD

50‑89
80‑94
AVERAGE

20‑49
60‑79
MEDIOCRE

10‑19
50‑59
POOR

<10
<50
COMPLETE FAILURE


If the midpoint of the six classes in Table 1 were plotted, it is revealed that the shape of the relationship is curvilinear (see Figure 4) but approximately linear above 60 percent.  This suggest that for data-limited areas, it may be possible to combine historical data for WRSI greater than 60 percent to form a larger data set and increase the sample size needed in statistical quantitative models.  More on the issue of combining data is discussed in later sections.
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4Figure 4.  Generalized relationship between midpoint values of WRSI and percent of maximum yield from Table B.1.  The qualitative description depicts the midpoint value of the class range.

1.4.3  Level III Model


The aim of a Level III model is to provide an absolute yield forecast value.  In SADC, this is derived from the simple linear regression model relating crop yield with the Water Requirements Satisfaction Index (WRSI).  This statistical model is represented by:


_ = a + bX + e

where:


_ =
dependent variable, the estimated yield in kg/ha.


X =
independent variable, e.g. WRSI


a =
constant (intercept on the vertical yield or Y-axis)


b =
regression coefficient (slope of line) for variable X


e =
residual error


A multiple linear or a nonlinear regression model could also be developed if sufficient data-years exit.  A multiple linear regression model has more than one independent variable (e.g. WRSI, temperature, number of frost days, etc), all to the first power.  They are regressed against the dependent variable, yield.  The model is represented by:


_ = a + b1X1 +b2X2 + e, where:



_ = yield



a = constant



b1= regression coefficient for variable 1



X1= value of variable 1



b2= regression coefficient for variable 2



X2= value of variable 2



e = residual error


When the independent variable is raised to more than the first power, the model is a nonlinear (also called curvilinear) model.  The variables can take several forms and must be judiciously selected.  Some examples include:


Power:
Y = a + bXn where n can be any power value,


Exponential:
Y = exp (a + bX)


Logarithmic:
Y = a + b*log X) (base e or 10)


Polynomial:
Y = a + b*X + cX2
The selection of the type of nonlinear model is one of trial and error.  The multiple and nonlinear models will not be elaborated further in this volume.  This is partially covered in Volume C.  The reader, however, is urged to review statistical texts to gain further insight into them.


In regression analysis, the principle of least square is used to fit the best fit line between the dependent variable (yield) and the independent variable (WRSI).  This principle states that the sum of squares of the difference between the observed (Y) and the estimated (_) values is a minimum, i.e. ((Y-_)2 = minimum.  The difference between the two is measured by the vertical distance from the observed datum point to the estimated value (represented on the regression line derived from the regression equation).  An example of the least squares analysis is shown in Section 4.0.

2.0  Data Requirement


In all three levels (I, II, III) of models in SADC, the dependent variable is yield (kg/ha). Compromises on the disaggregated level of agricultural or political boundaries are made, depending on the availability of reliable data.  The independent variable is Water Requirements Satisfaction Index (WRSI).  Inputs to calculate WRSI has been discussed in Section A of this manual.  

3.0  Procedure: Step-by Step Description


There are roughly 14 steps to building an operational agrometeorological crop yield model.  It begins with a well-designed proposal that outlines specific objective(s) and data requirements.  It ends in one sense with a test and a product output.  In another sense, it never ends because the model is continually reviewed and updated.  The following general steps (tasks) are suggested:

Step 1.
Write a Project Proposal

Step 2.
Secure Data Base (Meteorological and Agricultural)

Step 3.
Quality Check Data Base

Step 4.
Outline Proposed Model

Step 5.
Calculate FAO WRSI (Independent Variable)

Step 6.
Quality Check WRSI

Step 7.
Secure Spatially Averaged WRSI Variable

Step 8.
Plot Yield and Index Variables with Time

Step 9.
Modify Yield and Index Data as Necessary

Step 10.
Run Statistical Programme

Step 11.
Interpret Outputs and Select Candidate Model

Step 12.
Statistically Test Candidate Model

Step 13.
Operationally Test Candidate Model

Step 14.
Present Model Results (Documentation & Products)

These steps are amplified in the sections below.  They are also shown in the schematic chart of Figure 5 to visually depict the flow of the process.  The circled numbers correspond to the number for each of the 14 steps above.
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3.1  Write a Project Proposal


How does one begin?  This task is one of the most important part of building a model.  It is similar to drawing a plan (blueprint) to build a house.  The plan must include a strong foundation and necessary systems (electrical, plumbing, etc.).  It must be flexible to allow necessary changes as additional resources become available.  The plan requires much thought.  So it is with building an agrometeorological crop yield model.   


The proposal should include: (1) objective(s), (2) procedure, (3) proposed model (methods), (4) data requirements, (5) equipment requirements, (6) output products, (7) collection to delivery systems and (8) references.

3.2  Secure Data Base (Meteorological and Agricultural)


Are there sufficient data to build the proposed model?  This step leads one to consider: (1) the basis of the data (station, district, province, national levels); (2) the sample size of each, (3) the distribution of the agricultural growing areas vs. the distribution of the meteorological network; (4) the format and software in which the data are computerized and stored; etc.

3.3  Quality Check Data Base


How good are the data base?  Both the meteorological and the agricultural data base must be checked.  Simple tests to show "outlyers" can be performed.  As indicated above, plotting is a quick and simple way to detect suspect data.  For example, when the absolute yield is the same for two or three or more years, it is a signal to check the data more intensely (e.g. see Figure B.1).  If they are suspect, check them out with the original sources, including both published material and individuals.

3.4  Outline Proposed Model


What kind of model should be built?  If an idea of the data base is known, the kind of model to build can be quickly determined.  Given the knowledge of the climate and agricultural season for a particular locale, what variable(s) would most effectively reflect the status of the crop at the end of the season?


The proposed model could include more than one variable, but it should also a simple one.  The strategy is to determine the information content from the simplest model.  Increasing the complexity of the model, if it is an option, is weighed against the resources required with the potential information gained.

3.5  Calculate FAO (Water Requirement Satisfaction Index) WRSI


As indicated in Section A, there are software to calculate WRSI, e.g. FAOINDEX (Gommes, 1992).  Refer to this software if the reader is already familiar with the index.

3.6  Quality Check WRSI


Does the index reflect the status of the moisture season for the different regions in a country?  Does it show drought (wet) years?  Should adjustments be made in the inputs such as water retention capacity and effective rainfall?

3.7  Secure Spatially Averaged WRSI Variable


To use only one meteorological station for a district or region is risky.  Given the network of operational meteorological station network, how can one secure a representative value that reflects the crop response?   More on spatial averaging of data is found in Section F of this manual.

3.8  Plot Yield and Index Variables with Time


A time series plot of both the dependent and independent variable on the same graph provides a first approximation of the association between the two.  Figure 6 below, for example, provides visual clues as to how responsive yield changes are to changes in the WRSI.  An obvious check is necessary for the yield and WRSI data for 1986 and 1987.
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7Figure 6.  Times series plot of sorghum yield and WRSI.  This task is one of the steps in building an agrometeorological crop yield model to quickly determine the relationship between variables.


Is a trend indicated in the data set?  If so, are there reasons for this?  Is rainfall increasing (or decreasing) with time?  If technology (new varieties, fertilizer use, other cultural practices) trend is indicated, are there data available to substantiate this association?  In Figure 6, it appears that a trend exit.  This needs to be checked out.

3.9  Modify Yield and Index Data as Necessary


The expected result sometimes does not show itself with initial plotting.  This leads one to ask whether or not the index (rainfall) is representative. Are there unusual yield values that are "outlyers"?  A primary rule is that data should never be discarded when there is no good justification to do so!   It may be tempting to discard a datum point to improve the relationship, but this should not be the reason for deleting it.

3.10  Run Statistical Programme


There are numerous statistical software packages, which can be used to analyse the data and the model.  Some produce "esoteric" outputs.  The important point when any of these are used is to understand what the output represents.

3.11  Interpret Output and Select Candidate Model


What does the statistical model output show?  Does the output also include the confidence interval?  Calculation of the confidence interval means determining the standard error of the yield estimate from the model.  This process is illustrated in the sample calculation below (Section 4.0).

3.12  Statistically Test Candidate Model


After the candidate model is developed, it needs to be tested.  This involves using an independent data set if it is available.  How "robust" the test is (i.e. whether a truly independent test can be accomplished) depends much on the size of the sample data set.  Independent data are data not used in developing the model.  If independent data are not available, a less "robust" test can be accomplished by eliminating one year from the data set and calculating the model on the remaining data.  The estimated yield from the model is determined from the WRSI for the one year that was eliminated to develop the model.  This process is done repeatedly with a different year being eliminated and the candidate model developed on the balance of the data.  In this way, if there were, say 10 years of data, there would be 10 different model, each developed with 9 years of data. There would also be 10 estimated yield.  These are compared with the observed yield and tested for its statistical significance.


One can also determine the number of times the directional changes of the estimated and observed values agreed.  The desirable result is for both the observed and estimated yields to increase or decrease together.  The more times they agree, the better is the model.

3.13  Operationally Test Candidate Model


Once a candidate model is developed, an operational test is conducted.  This test involves running the entire system, from data collection to product output.  With this test, a real-time environment is created, thus revealing strengths and weaknesses, and therefore, providing areas for possible improvements.  One may conclude, for example, that the personnel at the National Early Warning Unit need further training to effectively process the data for operational use.  The test may also reveal that a meteorological station used to develop the model has now closed, and that a new station is needed to improve the representativeness of the input data. 


The form of the yield forecast product is extremely important.  What form will it be presented to the decision-maker?  Is it in map form? Is it in tabular form?  Although many potential users do not understand and may not accept a measure of confidence in the forecast, it should be calculated as part of the product.


To test the understanding of the yield forecast product, it is suggested that it be shown to other colleagues within the National Early Warning System, as well as to others not involved in the process of building the model.  In this manner, feedback can be secured to improve product understanding and reception.

3.14  Document Model Results


Documentation of the entire process is a must for institutional memory.  It informs future technicians of what has been done and provides recommendations for improvements.


Certain procedural steps are necessary to produce a candidate crop yield model for early warning.  The steps outlined above should help determine whether the models will have potential utility in the early warning system.  While these steps will not necessarily assure that a model is reliable, it will form a sound basis for which future improvements can be made as additional data are secured.

4.0  Sample Calculations

4.1  Level II Model


As described above, the level II model uses the matrix of WRSI and percent of the average of three highest yield shown in Table 1. The sorghum yield data set in Table 2 is used to demonstrate this class of model.

Table 2.  Sorghum yield, WRSI, sums of squares and sums of cross-products for the Gaborone Region, Botswana. 
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1982
62
42
-6.2
-40.2
38.44
1616.04
249.24

1983
17
34
-14.2
-85.2
201.64
7259.04
1209.84

1984
56
37
-11.2
-46.2
125.44
2134.44
517.44

1985
68
45
-3.2
-34.2
10.24
1169.64
109.44

1986
74
41
-7.2
-28.2
51.84
795.24
203.04

1987
50
48
-0.2
-52.2
0.04
2724.84
10.44

1988
269
65
16.8
166.8
282.24
27822.24
2802.24

1989
194
59
10.8
91.8
116.64
8427.24
991.44

1990
103
47
-1.2
0.8
1.44
0.64
-0.96

1991
129
64
15.8
26.8
249.64
718.24
423.44

1992
102
48
-0.2
-0.2
0.04
0.44
0.04

SUM
1022
482
xxxxxxxxx
xxxxxxxxx
1077.64
52668.04
6515.68

MEAN
92.9
43.8
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx


To apply the level II type model, all of the above calculations are not necessary.  It is only required to find the average of the three highest yield.  This is found in the table to be (269+194+129)/3 or 197 kg/ha.  If the WRSI for the current forecast year is determined to be 60, the forecast range of relative value from Table 1 is 20-49%.  This translates into 39 to 96 kg/ha when multiplied by 197 kg/ha.  As noted, the output has a large range.  In practice the result is often "massaged" with observations from the field.  This process is subjective and is governed primarily by first-hand field visits as well as by discussions with and information from agricultural extension service officers.

4.2  Level III  Model


The data in Table 2 are also used to demonstrate the calculation of the simple linear regression approach.  It is assumed that the quality of both the agricultural and agrometeorological data have been checked and that the next task is to develop a candidate statistical model (Step 10 in Section 3.0).  The first column is the year, from 1982 to 1992.  Yield in kg/ha and WRSI are shown in the second and third columns respectively.  The fourth column, shown by "xi" is the departure of the individual WRSI from its mean of 43.8.  "yi" in the fifth column is the departure of the individual yield with the overall mean of 92.9 kg/ha.  The sixth and seventh columns are the square of the departures, while the eighth column is the cross-product of WRSI and yield.  The sum of the squares and cross products are also shown at the bottom of the table.


As indicated above, the simple regression equation involves the method of least squares.  The method requires the following steps:

Step 1.
Find the number of observation, n and the mean of the sample yield and WRSI.


From Table 2, n=11; the mean of the WRSI or X is XBAR, and of the yield or Y is YBAR.  These are determined from the equations below.
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"i" represents the observation 1..11.  The mean of X, WRSI is  482/11=43.8; the mean of Y, yield is 1022/11=92.9 kg/ha. 

Step 2.
Find the corrected sums of squares of X (WRSI) and of Y (Yield).  The corrected sums of squares means that the sum of squares is adjusted for the mean as illustrated below.


The corrected (adjusted) sum of squares of X, WRSI is denoted by: 
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Note there is a distinction between little "x" and large "X".  The large "X" represents the individual value; the little "x" is the difference between the individual value and the mean, i.e. Xi-XBAR.  The individual value is "corrected" (adjusted) for the mean value.


The corrected sum of squares of Y, yield is denoted by:
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Note again the  difference between the little "y" and large "Y".  Little "y" represents the adjusted value of Y from its mean.

Step 3.
Find the sum of the cross products, i.e. Σxy.  This is denoted by:
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Note that the result can be either positive or negative.

Step 4.  Calculate the regression line. 


Recall from Section 1.4.3 that the simple regression equation is: _=a+bX+e.  _ is the estimated yield; "a", the constant; "b", the slope (also called the regression coefficient) and "e", the residual error.  "b" represents the amount of change of Y, yield with a given change of X, WRSI.  It is calculated as follows:
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Note again the little "x" and little "y". From Table 2, b=(6515.68/1077.64)=6.05. 


"a" is a constant.  It is also the intercept on the Y (or vertical axis) and is symbolically represented by:
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From Table 2, a = 92.9 - [(6.05)(43.8)] = -172.1.  The result leads to the simple linear regression model:
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The difference between the observed and estimated yield, (also denoted by _) is Y-_, and is called the residual error, e.  

Step 5.
Calculate the standard deviation of the yield estimate, sy.x from regression.


The standard deviation of the yield estimate (_) from regression is a measure of dispersion of yield regressed on WRSI.  It is denoted by:
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Note the denominator under the square root.  It is divided by n-2.  This is the degrees of freedom, given the sample size n.  Conceptually, the degrees of freedom can also be thought of as the restriction imposed upon the analyst to determine the desired parameters in a set of data.  For example, to obtain the mean of a column of numbers, each number can take on a range of values, except the last one, which must be a specific value to result in the mean; thus n-1.  Similarly, for two columns of data, each column can take on a range of numbers except the last one to result in the mean; thus n-2.


In the statistical analysis, the degrees of freedom (d.f.) is the number by which the sum of squares is to be divided to give the mean square.  One degree of freedom is attributable to the mean (constant); another is used for each of the variables for regression.  In a simple linear regression, the number of variable is one.  The total d.f. is (n-2) or 9 in the specific case of Table 2 when the sample size is 11.  It is given by the general formula df=n-k-1, where k is the number of independent variables.  For example, if there were two variables such as in a multiple linear regression equation, the d.f. is n-3 or 8, if n=11.


From the equation, and Table B.2, Σy2 = 52668.04; Σx2 = 1077.64; and (Σxy)2 = (6515.68)2.  From these inputs, sy.x=40.7 kgm/ha. 

Step 6.
Calculate the Coefficient of Determination (R2)


The coefficient of determination is another measure of variability.  It represent the percent of the total variability that is accounted for by the variable(s) in the regression equation.  If the coefficient of determination had been 1.0, this meant that the selected variable explained all the variation in the yield.  In this case, the difference between the observed and estimated value is zero, i.e. Yi-_=0 for every observation, leading to a perfect fit.  In reality, R2 is more often much less than 1.0.  The higher the R2, the more reliable is the model.  This is generally the case for a linear regression model, but not necessarily so for a multiple regression model.  The coefficient of determination is depicted as follows: 
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In the right side of the above equation, "1" is the total variability.  The second term represents the residual variability derived from the estimated regression line relative to the overall mean.

An equivalent formula to depict R2 is as follows:
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With this formula, and the data from Table B.2, (Σxy)2= (6515.68)2= 42,454,085; Σx2=1077.64; Σy2=52668.02.  Using the above formula,
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The result is interpreted to mean that the Water Requirements Satisfaction Index alone in the Gaborone Region of Botswana accounted for 75 percent of the variability of sorghum yield.

Step 7.
Calculate the 95 percent confidence interval of the yield estimate (_) for an individual forecast.


  The formula for the confidence interval is depicted by:
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The confidence interval (C.I.) provides a measure of confidence of the forecast.  Note that the interval depends on the standard deviation of the of the estimate (sy.x) in the regression.  If the scatter in the observed data from the regression line (model) is large, the standard deviation is expected to be large.  It follows that the confidence interval will also be large.


Before the above equation can be used, however, one additional term must be described.  This is the "student t" test criterion.  The "student t" test criterion defines the significance or probability level that is associated with the outcome.  The value of t.05 is usually selected, although a more stringent level of t.01 can be chosen in agriculture.  The 5% level is associated with the 95 percent confidence interval.  This confidence level is interpreted to mean that 95% of the time the true value will lie within the outer and lower limits as determined from the relationship above, and that a lower or a higher value could occur 5% of the time by chance alone.


With this background, one can proceed to calculate the 95% confidence interval (t.05 or 5% significance level).  Using a t-table from a statistical text, and using a one-tail test (.025 on one side of the normal distribution curve is equivalent to .05 when both sides of the curve is considered), a value of t.05,d.f.=9 = 2.262 is determined.  Refer to Table 3.

[image: image24.png]
8Table 3.


To find the 95% confidence interval of the forecast with a WRSI (Xf) of 60 for the current year, first find the yield forecast using the linear regression model obtained above, _=172.1+6.05X.  From this equation, the estimated sorghum yield forecast is 190.9 kg/ha.  The confidence interval of this value is then determined by finding the values of xf2 and Σx2.  In the above equation, xf2 is the value of the square of the departure of the current WRSI from the mean.  This is (60-43.8)2. From above t.05 d.f=9 =2.262 and sy.x=40.7.


As noted, little x2=(Xf-XBAR)2.  From Step 1, the mean is 43.8.  x2 = (60-43.8)2 = (16.2)2 or 262.44.  From Table 2, Σxi2=1077.64. n=11.  Replacing these values in the above equation for the confidence interval leads to:
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Summarizing the above, with a forecast value of 191 kgm (rounded), the 95% confidence interval ranges from 85 to 297 kg/ha.  There is a 5% chance that the actual value will be less than 85 or greater than 297 kg/ha. 

4.3  Combining Data Series in Time and Space


Generally the more data years available, the more stable is the regression coefficient of the model.  A frequent problem in the SADC countries is that the number of data years available is considered barely sufficient or inadequate.  There may be, for example, 10 years of data from each of two districts.  These 10 years are barely sufficient.  In model building, it is not appropriate to combine these two districts indiscriminately just to increase the sample size to 20.  This is because the response of a crop depends not only on weather conditions, but also on the potential productivity of the soil, the management practices, including varietal differences and fertilizer, and the interaction of these with each other.  Combining the data sets is likened to mixing apples and oranges together without considering their common baseline value or homogeneity.  The result is a heterogeneous sample, mixing different sources of undefined errors, and leading to an unstable forecast model.  In the following sections are potential ways to homogenize data.  In this process, a variable is scaled in the same units for the separate regions.  This scaling process is called "normalization" and is

done to allow comparisons between regions.

4.3.1  Percent of a Base (Average, Maximum)



A simple and often used normalization process is to express a value as a percent of average (or maximum).  This is often done in the field of agrometeorology.  The need to consider this process can be understood when one compares the crop yield in the semi-arid climate of Botswana  and the more tropical climate of northern Zambia.  Each location has its "normal" or average yield.  Similarly, a Water Requirement Satisfaction Index (WRSI) of, say 65, in Botswana is considered common; this value will spell disaster in Zambia.  The WRSI is also normalized relative to its water holding capacity.  This is interpreted to mean that the same WRSI values may correspond to rather different water consumptions and yields.  The normalized index as a percent of the average of the highest three values can also be used as shown in Table 1.


A major disadvantage of expressing crop yield as a percent of a base is that the number of data years available may not reflect the "population" average (or maximum or potential) yield.  The fewer the number of data years, the more likely it is that the forecast model will do poorly.


Table 4 below is used to illustrate the normalization process of combining two areas together.  The table includes the sorghum yield and Water Requirements Satisfaction Index (WRSI) for two regions, Gaborone and Francistown for the period 1982 through 1991.  The sixth column is the square of the departure of each observation from the mean of each region.

Table 4.  Combined Sorghum yield and WRSI data for Gaborone (GB) and Francistown (FT) Regions.

PRIVATE 
YEAR
WRSI (X)
YIELD 
% AVG YIELD     (Y)
REGION
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1982
42 
62 
61 
GB
42.25

1983
34 
17 
17 
GB
210.25

1984
37 
56 
55 
GB
132.25

1985
45 
68 
67 
GB
12.25

1986
41 
74 
72 
GB
56.25

1987
48 
50 
49 
GB
0.25

1988
65 
269 
263 
GB
272.25

1989
59 
194 
190 
GB
110.25

1990
47 
103 
101 
GB
2.25

1991
64 
129 
126 
GB
240.25

1982
38 
1 
1 
FT
110.25

1983
40 
45 
54 
FT
72.25

1984
40 
55 
66 
FT
72.25

1985
52 
110 
132 
FT
12.25

1986
41 
44 
53 
FT
56.25

1987
46 
18 
22 
FT
6.25

1988
69 
173 
207 
FT
420.25

1989
53 
154 
185 
FT
20.25

1990
47 
86 
103 
FT
2.25

1991
62 
148 
177 
FT
182.25

AVG
GB=48.2

FT=48.8
GB=102 FT=83 
xxxxxx 
xxxxxx
Σ=2033

The least squares method as illustrated in the simple linear regression example above is used to obtain the results in Table 5.

Table 5.  Combined (Gaborone and Francistown) Linear Regression Model Output.

PRIVATE 
Constant (a)
-195.3

Standard Error of Y Estimate (_)
35.11

Coefficient of Determination (R2)
0.773

Number of Observations (n)
20

Degrees of Freedom (n-2)
18

X Coefficient (b)
6.089


The combined linear regression model is:  _ = -195.3 + 6.09X.  The standard error of the estimate is 35.1 percent (not kg/ha).  For a 1992 (current year) forecast with a WRSI of 50 at both Gaborone and Francistown regions, the linear regression model provides a yield forecast of 109 (percent of the average).  In absolute value, this translates to 102*(1.09)=111 kg/ha at Gaborone and 83*(1.09)= 91 kg/ha at Francistown.  Of course, the WRSI would most likely differ in the two regions.  In this case, the combined model is used in each case to forecast the yield percentage for each region.


In the first example, the 95% confidence interval with t.05, d.f.=18 of 2.101 is:
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or a range from 34 to 184% of the average of each region.  Note that the largest contribution to the confidence interval is the standard error of the estimate, sy.x.


The plots in Figures 7, 8 and 9 should help in assessing the results.  In Figure 7 and 8, the relationship between absolute yield and WRSI are shown for each region.  In Figure 9, the two areas have been combined with the ordinate (vertical axis) now showing the percent of average yield (from Table 4), while the abscissa (horizontal axis) shows the WRSI.  


In summary, the following are the step-by-step instructions to calculate the outputs from the combined regression model.


1.
Write the derived regression equation and the standard error of the Y estimate from the combined data set (in this case Gaborone and Francistown Region).


2.
Define each term of the equation and units.


3.
Calculate the Y (yield) forecast in the given units of the model, given the X value (e.g. 50).


4.
Transform the Y (yield) forecast in absolute units, i.e. kg/ha.


5.
Write down the equation to calculate the 95% confidence interval.


6.
Define each term in the given units of the model.


7.
Determine the "t" value with the appropriate degrees of freedom (n-2).


8.
Transform the confidence interval values in absolute units, i.e. kg/ha.


9.
Write out the complete forecast statement as in the example below:



"With 95 percent confidence, the sorghum yield forecast for Gaborone Region in 1992 lies between X1 and X2 kilograms per hectare".  (There is a 5 percent chance that the actual yield will fall outside these values)  

[image: image28.wmf]
9Figure 7  Relationship between sorghum yield and WRSI in Gaborone Region.

[image: image29.wmf]
10Figure 8  Relationship between sorghum yield and WRSI in Francistown Region.

[image: image30.wmf]
11Figure 10.  Relationship between the standardized variables of yield and WRSI in Gaborone (GB) and Francistown (FT) regions.

[image: image31.wmf]
12Figure 9.  Combined relationship between percent average yield in Gaborone (GB) and Francistown (FT) regions with WRSI.

4.3.2  Standardized Variable


Another statistically sound process of normalization is to use the standardized variable of both yield and WRSI.   This involves subtracting each observation from the mean, and dividing the resultant deviation by its standard deviation as shown in the examples below.
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where:



Xstd(i) , Ystd(i)= standardized value of Xi (WRSI), Yi (Yield)



Xi, Yi

= variable X (Y); i = 1..n observations



X(bar), Y(bar)   = mean or average of variable X (or Y)



sx, sy

= standard deviation of X (or Y)


Subtracting the observation from the mean "centers" the observations.  Dividing by the standard deviation scales the value into similar units.  In Figure 10, a plot of the standardized variable for both yield and WRSI is shown for the combined data sets from Gaborone and Francistown regions.  To determine the simple linear regression model, the standardized variables are used as the dependent (Y) and independent (X) variables. The disadvantage of this approach is that the forecast output is in units of the standardized variate.  Consequently, it must be transformed into absolute yield, ie. Yi.  To do this, the mean or average yield, Y(bar) must be added to the product of the forecasted standardized yield variate (Ystd(i)) and the standard deviation of the yield data series, sy, that is, Yi=Ystd(i)*sy+Y(bar). 


It should also be noted that the WRSI itself is also a standardized variable (e.g. percentage of available water for a particular soil).  The relationship between water consumption under different soils and yield may be quite different.

4.3.3  Covariance Model 


Another possible approach to combining more than one area together for crop yield model development is to develop a covariance model.  The advantage of a covariance model is that the original values are retained.  In this process, the absolute values of the variables for each area is retained and a "dummy" variable (0 or 1) is used in the matrix to distinguish the separate regions.  An example of the matrix setup is shown in Table 6.  The "location" variable is included to adjust the overall mean value (constant) for the specific region or location.  The effects of the WRSI remains the same for all the locations.  In essence, this approach produces a multiple linear regression model.  For example, if there were two regions, the multiple regression model will have two independent variables.  The form of the model is: _=a+b1X1+b2X2+e where X1 is the WRSI effect; X2 is region effect; and "e" is residual error.  In the example of Table 6, the model is: 
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where the adjustment of 32.9 kg/ha is made where a "1" exit in the table; otherwise none.  For example with a WRSI of 50 at Gaborone, the forecast yield = -215.4+(6.03*50)+(32.9*1) = 119 kgm/ha; at Francistown, for a WRSI of 50, the forecast yield = =215.4+(6.03*50) = 86 kg/ha.  The effects of WRSI is measured by the coefficient 6.03.  The adjustment for location is 32.9 kg/ha.  The number of observations is 12; therefore, the number of degrees of freedom is 9.  The R2 is 0.796, while the standard error of the estimate sy.x is 36.2 kg/ha.

Table 6.  Example of the matrix setup for a covariance model with two (Gaborone=BG; Francistown= FT) locations and six years of data each.  Y is yield, and X is WRSI.

PRIVATE 
YEAR
YIELD
WRSI
LOCATION

1983
17
34
1 (GB)

1984
56
37
1 (GB)

1985
68
45
1 (GB)

1986
74
41
1 (GB)

1987
50
48
1 (GB)

1988
269
65
1 (GB)

1983
45
40
0 (FT)

1984
55
40
0 (FT)

1985
110
52
0 (FT)

1986
44
41
0 (FT)

1987
18
46
0 (FT)

1988
173
69
0 (FT)

4.3.4  Weighting of Variables


How does one combine the effect of rainfall in say, two (or more) districts in a regional model?  Rainfall over the two areas could be averaged.  However, if one district had contributed more hectares of a crop than the other, would this not bias the result if rainfall was simply averaged?  Most likely!


A practical way to deal with this problem is to assign weights to each district based on the proportion of planted/harvest area in each district.  For example, there are two districts, A and B in a province.  In District A, the WRSI is 80; in District B, it is 100.  District A contributed 80 percent of the maize harvested area and District B contributed only 20 percent.  If the WRSI from each district were combined to secure the provincial WRSI, the index from each district would need to be weighted accordingly to reflect its own contribution.  Thus, in this case, the provincial WRSI index is: (80 x 0.80) + (100 x 0.20) = 84 and not 90 if one used a simple average of the two.


This weighting concept can also be applied in time to consider the differential effect of moisture stress during the progress of the season.  It is known that the greatest impact of moisture on crop yield often occurs at the reproductive stage.  The largest weights would then be given to the reproductive stage while the remaining stages would be apportioned less weight so that the total weight over the season is equal to one (or 100 percent).


The weighting concept can also applied in space, e.g. for meteorological and biological variables leading to spatial averaging.  Specific examples and illustrations are provided in Volume G, "Spatial Averaging" of this manual. 

4.4  Summary


Options are available to combine data bases so as to secure sufficient number of degrees of freedom and to seek a statistically stable model.  Initially, however, these data should be normalized so as to achieve common base values and to compare them properly.  The concept of weighting is considered sufficiently important to consider effects of spatial and temporal differences and to seek representative effects of the independent variable on yield.

5.0  Limitations

5.1  Model is best where developed.


The simple linear regression model is an empirical model.  A basic premise of regression model is that it performs best in an area where the data originated and for similar environmental conditions of the historical period.

5.2  Regression model has tendency to favor the mean.


The regression model has a tendency to forecast the mean value fairly well when the year is an average year.  This also indicates that extreme values will be underestimated when environmental conditions are unusual.

5.3  Only one variable is considered.


The linear regression model uses only one variable.  In SADC, it is the WRSI.  Other factors, such the other outputs from the water balance algorithm, including evapotranspiration, soil moisture, water surplus/deficit as well as temperature or cultural practices such as adding fertilizer are not considered in the model.  Unless these technological changes are considered, one assumes normal cultural practices consistent with the historical data set.

5.4  Model needs to be updated.


Because of the empiricism involved with the regression model, it needs to be updated as new data become available.  The model is a reflection of its past; consequently, if new data contains extremes not in the set used to develop the model, it will likely do poorly when extreme conditions are encountered again.  Also, with the introduction of new technology, an increasing yield trend may be evident.  If so, this trend needs to be considered in the updated model.

6.0  Potential Operational Issues

6.1  What is the best period to operate the model?


In SADC Early Warning System for Food Security, a crop forecast is desirable early in the season.  Although a forecast model may not be available at planting time, it is nevertheless important to initiate the water balance model every dekad starting at planting.  Doing so will help establish the routine and enable one to monitor the evolution of the forecasts.  For modeling integrity, the most reliable time is near the reproductive stage of the crop.  There is no reliable way to accurately predict the moisture regime through the end of the growing season.  Consequently, February/March is the suggested time to issue a quantiative forecast from the model.  This, however, does not preclude the assessor to monitor the analysis of all the agrometeorological variables affecting crop production.  In fact, it is highly recommended that this be done. 

6.2  Must the WRSI variable be extended to the end of the growing season to use in the model?


Not necessarily so.  It would be prudent to try several models with WRSI variables that reflect the current month without the need for a forecasted input.  For example, if the forecast is issued for the end of March, the WRSI is calculated with data from planting through March.  Similarly, if the forecast is issued for the end of April, the WRSI uses the meteorological data through April, etc. The advantage of these models is that no assumption is made on the future weather as in the case where the index is calculated through the end of the growing season.  As expected, the "best" model is likely to be the one that includes all the observed data in the independent variable.


Another option, although time-consuming is to use the historical data set after the current dekad to calculate the index.  Following this algorithm for all the n years of data, the model output is estimated.  This provides n yield estimates.  The modal or mean value is selected, depending on their distribution and the number of data years available for analysis.

6.3  Can a model which uses production rather than yield be developed?


This has been done by others.  However, by doing so, another major estimation error, area, is introduced.  This would lead to a larger than desirable confidence interval.  This type of variable is often considered by economists, as crop production is a necessary input in the food balance sheet in early warning for food security.  Area estimation should be left to others.

6.4  If less than 10 years of data exist, should a linear regression model be developed?


This problem has been discussed above.  The "name of the game" is extracting the best information.  Consideration should be given to combining areas by homogenizing the data base.  However, there are disadvantages to considering such a step.  The output, as in any regression model output, should be reviewed with other sources of data and information.

6.5  What should be the size of the region for which to develop a model?


Agrometeorologists are often asked to forecast for the smallest administrative area, e.g. district level.  This is possible if data exists.  Each district will likely have a unique model of its own.  One should also remember that the variability of the yield data base is likely to be larger than the yield data base for a larger area, e.g. district vs. region.  When district area and yield data are combined to provide regional statistics, the standard error decreases as indicated in Figure 2 above.

6.6  How should the output from the model be presented to the user?


It is common to consider only the mean yield forecast and not the confidence interval.  In SADC Early Warning for Food Security, the ability to use the confidence interval is still in the realm of the learning curve.  However, it is advised that these values be available when briefing time comes along.  There is always a level of uncertainty.  The confidence interval is a proper way to depict this.

7.0  Exercise

7.1  Given the yield data series in the third column of Table B.6, calculate the level II type forecast yield given a WRSI value of 55.

Table 7.  1982-1991 Yield (Y) and WRSI (X) data for Francistown region, Botswana.  

PRIVATE 
YEAR
X
Y
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1982
38 
1 

 

 
 

1983
40 
45 

 




1984
40 
55 






1985
52 
110






1986
41 
44 






1987
46 
18 






1988
69 
173






1989
53 
154






1990
47 
186






1991
62 
148






SUM
488
834
XXXXXX 
XXXXXXX 
Σx2=   
Σy2= 
Σxy= 

MEAN
48.8
83
XXXXXX
XXXXXXXX




7.2  Using the data in Table 7 calculate and enter the corrected sums of squares and cross-products in the appropriate blank spaces to find the simple regression model.  Find the standard error of the yield estimate, sy.x and the coefficient of determination, R2.  Find the 95% confidence band with a WRSI of 55 for the current year.

Table 8.  1982-1991 Yield (Y) and WRSI (X) data for Francistown region, Botswana.  

PRIVATE 
YEAR
X
Y
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1982
38 
1 
-10.8
-82.4 
116.6
6789.8 
889.92 

1983
40 
45 
-8.8
 -38.4
77.4
1474.6
337.92

1984
40 
55 
-8.8
-28.4
77.4
806.6
249.92

1985
52 
110 
3.2
26.6
10.2
707.6
85.12

1986
41 
44 
-7.8
-39.4
60.8
1552.4
307.32

1987
46 
18 
-2.8
-65.4
7.8
4277.2
183.12

1988
69 
173 
20.2
89.6
408.0
8028.2
1809.92

1989
53 
154 
4.2
70.6
17.6
4984.4
296.52

1990
47 
186 
-1.8
2.6
3.2
6.8
-4.68

1991
62 
148 
13.2
64.6
174.2
4173.2
852.72

SUM
488
834
XXXXXXX 
XXXXXXX 
Σx2=   
Σy2= 
Σxy= 

MEAN
48.8
83.4
XXXXXX
XXXXXXXX
953.6
32800.4
5007.8

8.0  Answers to Exercise

8.1  Answer to question 7.1.


The average of the three highest yield : 110, 173 and 154 kg/ha is 145.7 kg/ha.  With a WRSI of 55, and using Table 1, the yield is 10-19% of the average of the three highest yield.  This corresponds to about 15 to 28 kg/ha.    

8.2  Answer to question 7.2


From Table 8, the mean WRSI is 48.8; mean yield is 83.4; the corrected sum of squares for WRSI is Σx2=953.6; the corrected sum of squares for yield is Σy2=32800.4; the 

corrected sum of cross-products is Σxy=5007.8.
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The linear regression model is:
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Coefficient of Determination is:
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The degrees of freedom is n-2 or 8.  The standard deviation of predicted yield, sy.x is:
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With a current year WRSI of 55, _ = 115.6 kg/ha.  The 95% confidence interval for X55, a WRSI of 55 and t.05,d.f.=8 is 46 to 285 kg/ha. 
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�seq Figure  \* Arabic�5�Figure 5.  Flow chart showing the process of building a regression crop yield model with the WRSI (Water Requirements Satisfaction Index) as the independent variable.
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�seq Figure  \* Arabic�6�Figure 5 (continued). Flow chart showing the process of building a regression crop yield model with the WRSI (Water Requirements Satisfaction Index) as an independent variable.
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